SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schlatter D.) srt2:(2015-2019)"

Search: WFRF:(Schlatter D.) > (2015-2019)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Coda, S., et al. (author)
  • Physics research on the TCV tokamak facility: From conventional to alternative scenarios and beyond
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Journal article (peer-reviewed)abstract
    • The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
  •  
2.
  • Coda, S., et al. (author)
  • Overview of the TCV tokamak program : Scientific progress and facility upgrades
  • 2017
  • In: Nuclear Fusion. - : Institute of Physics Publishing. - 0029-5515 .- 1741-4326. ; 57:10
  • Journal article (peer-reviewed)abstract
    • The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.
  •  
3.
  • Marco, Aitor, et al. (author)
  • A Variable Structure Control Scheme Proposal for the Tokamak a Configuration Variable
  • 2019
  • In: Complexity. - : Hindawi Publishing Corporation. - 1076-2787 .- 1099-0526.
  • Journal article (peer-reviewed)abstract
    • Fusion power is the most significant prospects in the long-term future of energy in the sense that it composes a potentially clean, cheap, and unlimited power source that would substitute the widespread traditional nonrenewable energies, reducing the geographical dependence on their sources as well as avoiding collateral environmental impacts. Although the nuclear fusion research started in the earlier part of 20th century and the fusion reactors have been developed since the 1950s, the fusion reaction processes achieved have not yet obtained net power, since the generated plasma requires more energy to achieve and remain in necessary particular pressure and temperature conditions than the produced profitable energy. For this purpose, the plasma has to be confined inside a vacuum vessel, as it is the case of the Tokamak reactor, which consists of a device that generates magnetic fields within a toroidal chamber, being one of the most promising solutions nowadays. However, the Tokamak reactors still have several issues such as the presence of plasma instabilities that provokes a decay of the fusion reaction and, consequently, a reduction in the pulse duration. In this sense, since long pulse reactions are the key to produce net power, the use of robust and fast controllers arises as a useful tool to deal with the unpredictability and the small time constant of the plasma behavior. In this context, this article focuses on the application of robust control laws to improve the controllability of the plasma current, a crucial parameter during the plasma heating and confinement processes. In particular, a variable structure control scheme based on sliding surfaces, namely, a sliding mode controller (SMC) is presented and applied to the plasma current control problem. In order to test the validity and goodness of the proposed controller, its behavior is compared to that of the traditional PID schemes applied in these systems, using the RZIp model for the Tokamak a Configuration Variable (TCV) reactor. The obtained results are very promising, leading to consider this controller as a strong candidate to enhance the performance of the PID-based controllers usually employed in this kind of systems.
  •  
4.
  • Moortgat-Pick, G., et al. (author)
  • Physics at the e(+) e(-) linear collider
  • 2015
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 75:8
  • Research review (peer-reviewed)abstract
    • A comprehensive review of physics at an e(+) e(-) linear collider in the energy range of root s = 92 GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as super-symmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.
  •  
5.
  • Vinuesa, Ricardo, et al. (author)
  • On minimum aspect ratio for experimental duct flow facilities
  • 2016
  • In: 2nd WALLTURB Workshop on Understanding and modelling of wall turbulence, 2014. - Cham : Springer. - 9783319203874 ; , s. 201-211
  • Conference paper (peer-reviewed)abstract
    • To the surprise of some of our colleagues, we recently recommended aspect ratios of at least 24 (instead of accepted values over last few decades ranging from 5 to 12) to minimize effects of sidewalls in turbulent duct flow experiments, in order to approximate the two-dimensional channel flow. Here we compile avail- able results from hydraulics and civil engineering literature, where this was already documented in the 1980s. This is of great importance due to the large amount of computational studies (mainly Direct Numerical Simulations) for spanwise-periodic turbulent channel flows, and the extreme complexity of constructing a fully developed duct flow facility with aspect ratio of 24 for high Reynolds number with adequate probe resolution. Results from this nontraditional literature for the turbulence com- munity are compared to our recent database of DNS of turbulent duct flows with aspect ratios ranging from 1 to 18 and Reτ,c ≃ 180 and 330, leading to very good agreement between their experimental and our computational results.
  •  
6.
  •  
7.
  • Roth, Lorenz, et al. (author)
  • DETECTION OF A HYDROGEN CORONA IN HST Ly alpha IMAGES OF EUROPA IN TRANSIT OF JUPITER
  • 2017
  • In: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 153:2
  • Journal article (peer-reviewed)abstract
    • We report far-ultraviolet observations of Europa in transit of Jupiter obtained with the Space Telescope Imaging Spectrograph of the Hubble Space Telescope on six occasions between 2014 December and 2015 March. Absorption of Jupiter's bright hydrogen Ly alpha dayglow is detected in a region several moon radii above the limb in all observations. The observed extended absorption provides the first detection of an atomic hydrogen corona around Europa. Molecular constituents in Europa's global sputtered atmosphere are shown to be optically thin to Lya. The observations are consistent with a radially escaping H corona with maximum densities at the surface in the range of (1.5-2.2) x 10(3) cm(-3), confirming the abundances predicted by Monte Carlo simulations. In addition, we search for anomalies around the limb of Europa from absorption by localized high H2O abundances from active plumes. No significant local absorption features are detected. We find that an H2O plume with line-of-sight column density in the order of 10(16) cm(-2), as inferred by Roth et al. would not be detectable based on the statistical fluctuations of the transit measurements, and hence is not excluded or further constrained. The presence of plumes with line-of-sight column densities of >2 x 10(17) cm(-2) can be excluded at a 3-sigma level during five of our six observations.
  •  
8.
  • Schlatter, Nicola Manuel, et al. (author)
  • Auroral ion acoustic wave enhancement observed with a radar interferometer system
  • 2015
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:7, s. 837-844
  • Journal article (peer-reviewed)abstract
    • Measurements of naturally enhanced ion acoustic line (NEIAL) echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EIS-CAT) radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI) installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 x 500 m, and at times less than 160m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.
  •  
9.
  • Vinuesa, R., et al. (author)
  • Characterization of the massively separated wake behind a square cylinder by means of direct numerical simulation
  • 2016
  • In: Springer Proceedings in Physics. - Cham : Springer Science+Business Media B.V.. - 9783319306001 ; , s. 259-266
  • Conference paper (peer-reviewed)abstract
    • The massively separated wake behind a wall-mounted square cylinder is investigated by means of direct numerical simulation (DNS). The effect of inflow conditions is assessed by considering two different cases with matching momentum thickness Reynolds numbers Reθ ≃ 1000 at the location of the cylinder: one with a fully-turbulent boundary layer as inflow condition, and another one with a laminar boundary layer. The main simulation is performed by using the spectral element code Nek5000. While in the laminar-inflow simulation the horseshoe vortex forming around the cylinder can be observed in the instantaneous flow fields, this is not the case in the turbulent-inflow simulation. Besides, the streaks in the turbulent case become greatly attenuated on both sides of the obstacle. By analyzing the Reynolds shear stress uv, we show that this is due to the modulation of the horseshoe vortex by the turbulence from the incoming boundary layer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view