SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shetrone Matthew) srt2:(2022)"

Sökning: WFRF:(Shetrone Matthew) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
2.
  • Hayes, Christian R., et al. (författare)
  • BACCHUS Analysis of Weak Lines in APOGEE Spectra (BAWLAS)
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 262:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Elements with weak and blended spectral features in stellar spectra are challenging to measure and require specialized analysis methods to precisely measure their chemical abundances. In this work, we have created a catalog of approximately 120,000 giants with high signal-to-noise Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 17 (DR17) spectra, for which we explore weak and blended species to measure Na, P, S, V, Cu, Ce, and Nd abundances and C-12/C-13 isotopic ratios. We employ an updated version of the Brussels Automatic Code for Characterizing High-accuracy Spectra (BACCHUS) code to derive these abundances using the stellar parameters measured by APOGEE's DR17 Stellar Parameters and Chemical Abundances Pipeline, quality flagging to identify suspect spectral lines, and a prescription for upper limits. Combined, these allow us to provide our BACCHUS Analysis of Weak Lines in APOGEE Spectra catalog of precise chemical abundances for these weak and blended species, which agrees well with the literature and improves upon APOGEE abundances for these elements, some of which are unable to be measured with APOGEE's current, grid-based approach without computationally expensive expansions. This new catalog can be used alongside APOGEE and provides measurements for many scientific applications ranging from nuclear physics to Galactic chemical evolution and Milky Way population studies. To illustrate this we show some examples of uses for this catalog, such as showing that we observe stars with enhanced s-process abundances or that we can use the C-12/C-13 ratios to explore extra mixing along the red giant branch.
  •  
3.
  • Souto, Diogo, et al. (författare)
  • Detailed Chemical Abundances for a Benchmark Sample of M Dwarfs from the APOGEE Survey
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 927:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H-band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work's M dwarfs is -0.05 +/- 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T (eff), log g = +0.21 dex, -50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = -0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs.
  •  
4.
  • Weinberg, David H., et al. (författare)
  • Chemical Cartography with APOGEE : Mapping Disk Populations with a 2-process Model and Residual Abundances
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 260:2, s. 1-46
  • Tidskriftsartikel (refereegranskat)abstract
    • We apply a novel statistical analysis to measurements of 16 elemental abundances in 34,410 Milky Way disk stars from the final data release (DR17) of APOGEE-2. Building on recent work, we fit median abundance ratio trends [X/Mg] versus [Mg/H] with a 2-process model, which decomposes abundance patterns into a "prompt" component tracing core-collapse supernovae and a "delayed" component tracing Type Ia supernovae. For each sample star, we fit the amplitudes of these two components, then compute the residuals Delta[X/H] from this two-parameter fit. The rms residuals range from similar to 0.01-0.03 dex for the most precisely measured APOGEE abundances to similar to 0.1 dex for Na, V, and Ce. The correlations of residuals reveal a complex underlying structure, including a correlated element group comprised of Ca, Na, Al, K, Cr, and Ce and a separate group comprised of Ni, V, Mn, and Co. Selecting stars poorly fit by the 2-process model reveals a rich variety of physical outliers and sometimes subtle measurement errors. Residual abundances allow for the comparison of populations controlled for differences in metallicity and [alpha/Fe]. Relative to the main disk (R = 3-13 kpc), we find nearly identical abundance patterns in the outer disk (R = 15-17 kpc), 0.05-0.2 dex depressions of multiple elements in LMC and Gaia Sausage/Enceladus stars, and wild deviations (0.4-1 dex) of multiple elements in omega Cen. The residual abundance analysis opens new opportunities for discovering chemically distinctive stars and stellar populations, for empirically constraining nucleosynthetic yields, and for testing chemical evolution models that include stochasticity in the production and redistribution of elements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy