SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simard Edgar P.) srt2:(2016)"

Sökning: WFRF:(Simard Edgar P.) > (2016)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • Measurements of fiducial cross-sections for [Formula: see text] production with one or two additional b-jets in pp collisions at [Formula: see text]=8 TeV using the ATLAS detector.
  • 2016
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • Fiducial cross-sections for [Formula: see text] production with one or two additional b-jets are reported, using an integrated luminosity of 20.3 fb[Formula: see text] of proton-proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for [Formula: see text] events with at least one additional b-jet is measured to be 950 [Formula: see text] 70 (stat.) [Formula: see text] (syst.) fb in the lepton-plus-jets channel and 50 [Formula: see text] 10 (stat.) [Formula: see text] (syst.) fb in the [Formula: see text] channel. The cross-section times branching ratio for events with at least two additional b-jets is measured to be 19.3 [Formula: see text] 3.5 (stat.) [Formula: see text] 5.7 (syst.) fb in the dilepton channel ([Formula: see text], [Formula: see text], and ee) using a method based on tight selection criteria, and 13.5 [Formula: see text] 3.3 (stat.) [Formula: see text] 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 [Formula: see text] 0.33 (stat.) [Formula: see text] 0.28 (syst.)% for the ratio of [Formula: see text] production with two additional b-jets to [Formula: see text] production with any two additional jets. All measurements are in good agreement with recent theory predictions.
  •  
2.
  • Aad, G, et al. (författare)
  • Searches for scalar leptoquarks in pp collisions at [Formula: see text] = 8 TeV with the ATLAS detector.
  • 2016
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • Searches for pair-produced scalar leptoquarks are performed using 20 fb[Formula: see text] of proton-proton collision data provided by the LHC and recorded by the ATLAS detector at [Formula: see text] TeV. Events with two electrons (muons) and two or more jets in the final state are used to search for first (second)-generation leptoquarks. The results from two previously published ATLAS analyses are interpreted in terms of third-generation leptoquarks decaying to [Formula: see text] and [Formula: see text] final states. No statistically significant excess above the Standard Model expectation is observed in any channel and scalar leptoquarks are excluded at 95 % CL with masses up to [Formula: see text] 1050 GeV for first-generation leptoquarks, [Formula: see text] 1000 GeV for second-generation leptoquarks, [Formula: see text] 625 GeV for third-generation leptoquarks in the [Formula: see text] channel, and 200 [Formula: see text] 640 GeV in the [Formula: see text] channel.
  •  
3.
  • Aad, G, et al. (författare)
  • Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at [Formula: see text] and 8 TeV in the ATLAS experiment.
  • 2016
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the [Formula: see text] and [Formula: see text] decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 [Formula: see text] at [Formula: see text] TeV and 20.3 [Formula: see text] at [Formula: see text] TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is [Formula: see text]. The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered.
  •  
4.
  •  
5.
  • Aad, G, et al. (författare)
  • Study of the [Formula: see text] and [Formula: see text] decays with the ATLAS detector.
  • 2016
  • Ingår i: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • The decays [Formula: see text] and [Formula: see text] are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb[Formula: see text] of pp collisions collected at centre-of-mass energies [Formula: see text] TeV and 8 TeV, respectively. Signal candidates are identified through [Formula: see text] and [Formula: see text] decays. With a two-dimensional likelihood fit involving the [Formula: see text] reconstructed invariant mass and an angle between the [Formula: see text] and [Formula: see text] candidate momenta in the muon pair rest frame, the yields of [Formula: see text] and [Formula: see text], and the transverse polarisation fraction in [Formula: see text] decay are measured. The transverse polarisation fraction is determined to be [Formula: see text], and the derived ratio of the branching fractions of the two modes is [Formula: see text], where the first error is statistical and the second is systematic. Finally, a sample of [Formula: see text] decays is used to derive the ratios of branching fractions [Formula: see text] and [Formula: see text], where the third error corresponds to the uncertainty of the branching fraction of [Formula: see text] decay. The available theoretical predictions are generally consistent with the measurement.
  •  
6.
  • Aad, G., et al. (författare)
  • 2016
  • Ingår i: The European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6052. ; 76:1
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  •  
8.
  • Aad, G., et al. (författare)
  • 2016
  • Ingår i: Physical Review D. Particles and fields. - : American Physical Society. - 0556-2821 .- 1089-4918. ; 93:1
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  • Aad, G., et al. (författare)
  • 2016
  • Ingår i: Journal of High Energy Physics. - : Springer. - 1029-8479 .- 1126-6708. ; :1
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  • Wang, Haidong, et al. (författare)
  • Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1459-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.INTERPRETATION: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy