SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sohn Bong Won) srt2:(2023)"

Sökning: WFRF:(Sohn Bong Won) > (2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Xiaopeng, et al. (författare)
  • Toward Microarcsecond Astrometry for the Innermost Wobbling Jet of the BL Lacertae Object OJ 287
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 955:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The BL Lacertae object OJ 287 is a very unusual quasar producing a wobbling radio jet and some double-peaked optical outbursts with a possible period of about 12 yr for more than one century. This variability is widely explained by models of binary supermassive black holes (SMBHs) or precessing jets/disks from a single SMBH. To enable an independent and nearly bias-free investigation on these possible scenarios, we explored the feasibility of extremely high-precision differential astrometry on its innermost restless jet at millimeter wavelengths. Through revisiting some existing radio surveys and very long baseline interferometry (VLBI) data at frequencies from 1.4 to 15.4 GHz and performing new Very Long Baseline Array observations at 43.2 GHz, we find that the radio source J0854+1959, 7.' 1 apart from OJ 287 and with no clearly seen optical and infrared counterparts, could provide a nearly ideal reference point to track the complicated jet activity of OJ 287. The source J0854+1959 has a stable GHz-peaked radio spectrum and shows a jet structure consisting of two discrete, milliarcsecond-scale-compact and steep-spectrum components and showing no proper motion over about 8 yr. The stable VLBI structure can be interpreted by an episodic, optically thin, and one-sided jet. With respect to its 4.1 mJy peak feature at 43.2 GHz, we have achieved an astrometric precision at the state-of-art level, about 10 mu as. These results indicate that future VLBI astrometry on OJ 287 could allow us to accurately locate its jet apex and activity boundary, align its restless jet structure over decades without significant systematic bias, and probe various astrophysical scenarios.
  •  
2.
  • Jorstad, S.G., et al. (författare)
  • The Event Horizon Telescope Image of the Quasar NRAO 530
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 943:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5-7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of similar to 20 mu as, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of similar to 5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 mu as along a position angle similar to -28 degrees. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin.
  •  
3.
  • Torne, Pablo, et al. (författare)
  • A Search for Pulsars around Sgr A* in the First Event Horizon Telescope Data Set
  • 2023
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 959:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2017 the Event Horizon Telescope (EHT) observed the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz (lambda = 1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT data sets. The high observing frequency means that pulsars-which typically exhibit steep emission spectra-are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope, and the IRAM 30 m Telescope. We apply three detection methods based on Fourier-domain analysis, the fast folding algorithm, and single-pulse searches targeting both pulsars and burst-like transient emission. We use the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction (less than or similar to 2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy