SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Styring Stenbjörn) srt2:(2000-2004)"

Sökning: WFRF:(Styring Stenbjörn) > (2000-2004)

  • Resultat 1-10 av 58
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, M. L. A., et al. (författare)
  • Ruthenium-manganese complexes for artificial photosynthesis : Factors controlling intramolecular electron transfer and excited-state quenching reactions
  • 2002
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 41:6, s. 1534-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuing our work toward a system mimicking the electron-transfer steps from manganese to P-680(+) in photosystem II (PS II), we report a series of ruthenium(II)-manganese(II) complexes that display intramolecular electron transfer from manganese(II) to photooxidized ruthenium(III). The electron-transfer rate constant (k(ET)) values span a large range, 1 X 10(5)-2 x 10(7) s(-1), and we have investigated different factors that are responsible for the variation. The reorganization energies determined experimentally (lambda = 1.5-2.0 eV) are larger than expected for solvent reorganization in complexes of similar size in polar solvents (typically lambda approximate to 1.0 eV). This result indicates that the inner reorganization energy is relatively large and, consequently, that at moderate driving force values manganese complexes are not fast donors. Both the type of manganese ligand and the link between the two metals are shown to be of great importance to the electron-transfer rate. In contrast, we show that the quenching of the excited state of the ruthenium(II) moiety by manganese(II) in this series of complexes mainly depends on the distance between the metals. However, by synthetically modifying the sensitizer so that the lowest metal-to-ligand charge transfer state was localized on the nonbridging ruthenium(II) ligands, we could reduce the quenching rate constant in one complex by a factor of 700 without changing the bridging ligand. Still, the manganese(II)-ruthenium (III) electrontransfer rate constant was not reduced. Consequently, the modification resulted in a complex with very favorable properties.
  •  
2.
  • Berg, K. E., et al. (författare)
  • Covalently linked ruthenium(II)-manganese(II) complexes : Distance dependence of quenching and electron transfer
  • 2001
  • Ingår i: European Journal of Inorganic Chemistry. - 1434-1948 .- 1099-1948. ; 2001:4, s. 1019-1029
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuing our development of artificial models for photosystem II in green plants, a series of compounds have been prepared in which a RU(bpy)(3)(2+) photosensitizer is covalently Linked to a manganese(II) electron donor. In addition to a trispicolylamine Ligand, two other manganese Ligands, dipicolylamine and aminodiacetic acid, have been introduced in order to study Ligands that are appropriate for the construction of manganese dimers with open coordination sites for the binding of water. Coordination equilibria of the manganese ions were monitored by EPR. The interactions between the ruthenium and manganese moieties were probed by flash photolysis, cyclic voltammetry and steady-state and time-resolved emission measurements. The quenching of the Ru-II excited state by Mn-II was found to be rapid in complexes with short Ru-Mn distances. Nevertheless, each Run species could be photo-oxidized by bimolecular quenching with methylviologen, and the subsequent electron transfer from Mn-II to Ru-III could be monitored.
  •  
3.
  • Bernat, Gabor, et al. (författare)
  • pH dependence of the four individual transitions in the catalytic S-cycle during photosynthetic oxygen evolution.
  • 2002
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 41:18, s. 5830-5843
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the pH dependence for each individual redox transition in the S-cycle of the oxygen evolving complex (OEC) of photosystem II by electron paramagnetic resonance (EPR) spectroscopy. In the experiments, OEC is advanced to the appropriate S-state at normal pH. Then, the pH is rapidly changed, and a new flash is given. The ability to advance to the next S-state in the cycle at different pHs is determined by measurements of the decrease or increase of characteristic EPR signals from the OEC in different S-states. In some cases the measured EPR signals are very small (this holds especially for the S0 ML signal at pH >7.5 and pH <4.8). Therefore, we refrain from providing error limits for the determined pK's. Our results indicate that the S1 --> S2 transition is independent of pH between 4.1 and 8.4. All other S-transitions are blocked at low pH. In the acidic region, the pK's for the inhibition of the S2 --> S3, the S3 --> [S4] --> S0, and the S0 --> S1 transitions are about 4.0, 4.5, and 4.7, respectively. The similarity of these pK values indicates that the inhibition of the steady-state oxygen evolution in the acidic range, which occurs with pK approximately 4.8, is a consequence of similar pH blocks in three of the redox steps involved in the oxygen evolution. In the alkaline region, we report a clear pH block in the S3 --> [S4] --> S0 transition with a pK of about 8.0. Our study also indicates the existence of a pH block at very high pH (pK approximately 9.4) in the S2 --> S3 transition. The S0 --> S1 transition is not affected, at least up to pH 9.0. This suggests that the inhibition of the steady-state oxygen evolution, which occurs with a pK of 8.0, is dominated by the inhibition of the S3 --> [S4] --> S0 transition. Our results are obtained in the presence of 5% methanol (v/v). However, it is unlikely that the determined pK's are affected by the presence of methanol since our results also show that the pH dependence of the steady-state oxygen evolution is not affected by methanol. The results in the alkaline region are in good agreement with a model, which suggests that the redox potential of Y(Z*)/Y(Z) is directly affected by high pH. At high pH the Y(Z*)/Y(Z) potential becomes lower than that of S2/S1 and S3/S2. The acidic block, with a pK of 4-5 in three S-transitions, implies that the inhibition mechanism is similar, and we suggest that it reflects protonation of a carboxylic side chain in the proton relay that expels protons from the OEC.
  •  
4.
  •  
5.
  • Danielsson, Ravi, et al. (författare)
  • Quantification, of photosystem I and II in different parts of the thylakoid membrane from spinach
  • 2004
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728. ; 1608:1, s. 53-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700(+) and Y-D(.), respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIbeta) has an antenna size of 100 Ch1. This gave the following results: PSI in grana margins (PSIalpha) 300, PSI (PSIbeta) in stroma lamellae 214, PSII in grana core (PSIIalpha) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex 11 (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII. (C) 2003 Elsevier B.V. All rights reserved.
  •  
6.
  • Feyziyev, Yashar, et al. (författare)
  • Electron transfer from cytochrome b559 and tyrosineD to the S2 and S3 states of the water oxidizing complex in photosystem II
  • 2003
  • Ingår i: Chemical Physics. - 0301-0104. ; 294:3, s. 415-431
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the electron transfer from reduced tyrosine YD (YDred) and cytochrome b559 to the S2 and S3 states of the water oxidizing complex (WOC) in Photosystem II. The EPR signal of oxidized cyt b559, the S2 state multiline EPR signal and the EPR signal from YD@? were measured to follow the electron transfer to the S2 and S3 states at 245 and 275 K. The majority of the S2 centers was reduced directly from YDred but at 245 K we observed oxidation of cyt b559 in about 20% of the centers. Incubation of the YDredS3 state resulted in biphasic changes of the S2 multiline signal. The signal first increased due to reduction of the S3 state. Thereafter, the signal decreased due to decay of the S2 state. In contrast, the YD@? signal increased with a monophasic kinetics at both temperatures. Again, we observed oxidation of cyt b559 in about 20% of the PSII centers at 245 K. This oxidation correlated with the decay of the S2 state. The complex changes can be explained by the conversion of YDredS3 centers (present initially) to YD@?S1 centers, via the intermediate YD@?S2 state. The early increase of the S2 state multiline signal involves electron transfer from YDred to the S3 state resulting in formation of YD@?S2. This state is reduced by cyt b559 resulting in a single exponential oxidation of cyt b559. Taken together, these results indicate that the electron donor to S2 is cyt b559 while cyt b559 is unable to compete with YDred in the reduction of the S3 state in the pre-reduced samples. We also followed the decay of the S2 and S3 states and the oxidation of cyt b559 in samples where YD was oxidized from the start. In this case cyt b559 was able to reduce both the S2 and the S3 states suggesting that different pathways exist for the electron transfer from cyt b559 to the WOC. The activation energies for the YDredS2->YD@?S1 and YDredS3->YD@?S2 transformations are 0.57 and 0.67 eV, respectively, and the reason for these large activation energies is discussed.
  •  
7.
  • Geijer, Paulina, et al. (författare)
  • Comparative studies of the S0 and S2 multiline electron paramagnetic resonance signals from the manganese cluster in Photosystem II
  • 2001
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - 0005-2728. ; 1503:1-2, s. 83-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron paramagnetic resonance (EPR) spectroscopy is one of the major techniques used to analyse the structure and function of the water oxidising complex (WOC) in Photosystem II. The discovery of an EPR signal from the S0 state has opened the way for new experiments, aiming to characterise the S0 state and elucidate the differences between the different S states. We present a review of the biochemical and biophysical characterisation of the S0 state multiline signal that has evolved since its discovery, and compare these results to previous and recent data from the S2 multiline signal. We also present some new data from the S2 state reached on the second turnover of the enzyme.
  •  
8.
  • Geijer, Paulina, et al. (författare)
  • Proton Equilibria in the Manganese Cluster of Photosystem II Control the Intensities of the S0 and S2 State g ~ 2 Electron Paramagnetic Resonance Signals
  • 2000
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 39:23, s. 6763-6772
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the pH effect on the S0 and S2 multiline electron paramagnetic resonance (EPR) signals from the water-oxidizing complex of photosystem II. Around pH 6, the maximum signal intensities were detected. On both the acidic and alkaline sides of pH 6, the intensities of the EPR signals decreased. Two pKs were determined for the S0 multiline signal; pK1 = 4.2 ± 0.2 and pK2 = 8.0 ± 0.1, and for the S2 multiline signal the pKs were pK1 = 4.5 ± 0.1 and pK2 = 7.6 ± 0.1. The intensity of the S0-state EPR signal was partly restored when the pH was changed from acidic or alkaline pH back to pH ~ 6. In the S2 state we observed partial recovery of the multiline signal when going from alkaline pH back to pH 6, whereas no significant recovery of the S2 multiline signal was observed when the pH was changed from acidic pH back to pH 6. Several possible explanations for the intensity changes as a function of pH are discussed. Some are ruled out, such as disintegration of the Mn cluster or decay of the S states and formal Cl- and Ca2+ depletion. The altered EPR signal intensities probably reflect the protonation/deprotonation of ligands to the Mn cluster or the oxo bridges between the Mn ions. Also, the possibility of decreased multiline signal intensities at alkaline pH as an effect of changed redox potential of YZ is put forward.
  •  
9.
  • Geijer, Paulina, et al. (författare)
  • The S3 State of the Oxygen-Evolving Complex in Photosystem II Is Converted to the S2YZ State at Alkaline pH
  • 2001
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 40:36, s. 10881-10891
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report an EPR signal that is induced by a pH jump to alkaline pH in the S3 state of the oxygen-evolving complex in photosystem II. The S3 state is first formed with two flashes at pH 6. Thereafter, the pH is changed in the dark prior to freezing of the sample. The EPR signal is 90-100 G wide and centered around g = 2. The signal is reversibly induced with a pK = 8.5 ± 0.3 and is very stable with a decay half-time of 5-6 min. If the pH is changed in the dark from pH 8.6 to 6.0, the signal disappears although the S3 state remains. We propose that the signal arises from the interaction between the Mn cluster and YZ, resulting in the spin-coupled S2YZ signal. Our data suggest that the potential of the YZ/YZ redox couple is sensitive to the ambient pH in the S3 state. The alkaline pH decreases the potential of the YZ/YZ couple so that YZ can give back an electron to the S3 state, thereby obtaining the S2YZ EPR signal. The tyrosine oxidation also involves proton release from YZ, and the results support a mechanism where this proton is released to the bulk medium presumably via a close-lying base. Thus, the equilibrium is changed from S3YZ to S2YZ by the alkaline pH. At normal pH (pH 5.5-7), this equilibrium is set strongly to the S3YZ state. The results are discussed in relation to the present models of water oxidation. Consequences for the relative redox potentials of YZ/YZ and S3/S2 at different pH values are discussed. We also compare the pH-induced S2YZ signal with the S2YZ signal from Ca2+-depleted photosystem II.
  •  
10.
  • Ghanem, Raed, et al. (författare)
  • Light-driven tyrosine radical formation in a ruthenium-tyrosine complex attached to nanoparticle TiO2
  • 2002
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 41:24, s. 6258-6266
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a possibility of multistep electron transfer in a supramolecular complex adsorbed on the surface of nanocrystalline TiO2. The complex mimics the function of the tyrosinez and chlorophyll unit P-680 in natural photosystem II (PSII). A ruthenium(II) tris(bipyridyl) complex covalently linked to a L-tyrosine ethyl ester through an amide bond was attached to the surface of nanocrystalline TiO2 via carboxylic acid groups linked to the bpy ligands. Synthesis and characterization of this complex are described. Excitation (450 nm) of the complex promotes an electron to a metal-to-ligand charge-transfer (MLCT) excited state, from which the electron is injected into TiO2. The photogeneration of Ru(III) is followed by an intramolecular electron transfer from tyrosine to Ru(III), regenerating the photosensitizer Ru(II) and forming the tyrosyl radical. The tyrosyl radical is formed in less than 5 us with a yield of 15%. This rather low yield is a result of a fast back electron transfer reaction from the nanocrystalline TiO2 to the photogenerated Ru(III).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 58

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy