SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Yunlong) "

Sökning: WFRF:(Yang Yunlong)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eleonora Hedlund, Eva-Maria, et al. (författare)
  • Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:2, s. 654-659
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of placental growth factor (PlGF) in modulation of tumor angiogenesis and tumor growth remains an enigma. Furthermore, anti-PlGF therapy in tumor angiogenesis and tumor growth remains controversial in preclinical tumor models. Here we show that in both human and mouse tumors, PlGF induced the formation of dilated and normalized vascular networks that were hypersensitive to anti-VEGF and anti-VEGFR-2 therapy, leading to dormancy of a substantial number of avascular tumors. Loss-of-function using plgf shRNA in a human choriocarcinoma significantly accelerated tumor growth rates and acquired resistance to anti-VEGF drugs, whereas gain-of-function of PlGF in a mouse tumor increased anti-VEGF sensitivity. Further, we show that VEGFR-2 and VEGFR-1 blocking antibodies displayed opposing effects on tumor angiogenesis. VEGFR-1 blockade and genetic deletion of the tyrosine kinase domain of VEGFR-1 resulted in enhanced tumor angiogenesis. These findings demonstrate that tumor-derived PlGF negatively modulates tumor angiogenesis and tumor growth and may potentially serve as a predictive marker of anti-VEGF cancer therapy.
  •  
2.
  • Hosaka, Kayoko, et al. (författare)
  • Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis
  • 2013
  • Ingår i: Nature Communications. - : Nature Publishing Group: Nature Communications. - 2041-1723. ; 4:2129
  • Tidskriftsartikel (refereegranskat)abstract
    • Anti-platelet-derived growth factor (PDGF) drugs are routinely used in front-line therapy for the treatment of various cancers, but the molecular mechanism underlying their dose-dependent impact on vascular remodelling remains poorly understood. Here we show that anti-PDGF drugs significantly inhibit tumour growth and metastasis in high PDGF-BB-producing tumours by preventing pericyte loss and vascular permeability, whereas they promote tumour cell dissemination and metastasis in PDGF-BB-low-producing or PDGF-BB-negative tumours by ablating pericytes from tumour vessels. We show that this opposing effect is due to PDGF-beta signalling in pericytes. Persistent exposure of pericytes to PDGF-BB markedly downregulates PDGF-beta and inactivation of the PDGF-beta signalling decreases integrin alpha 1 beta 1 levels, which impairs pericyte adhesion to extracellular matrix components in blood vessels. Our data suggest that tumour PDGF-BB levels may serve as a biomarker for selection of tumour-bearing hosts for anti-PDGF therapy and unsupervised use of anti-PDGF drugs could potentially promote tumour invasion and metastasis.
  •  
3.
  • Iwamoto, Hideki, et al. (författare)
  • PlGF-induced VEGFR1-dependent vascular remodeling determines opposing antitumor effects and drug resistance to Dll4-Notch inhibitors
  • 2015
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 1:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibition of Dll4 (delta-like ligand 4)-Notch signaling-mediated tumor angiogenesis is an attractive approach in cancer therapy. However, inhibition of Dll4-Notch signaling has produced different effects in various tumors, and no biomarkers are available for predicting the anti-Dll4-Notch-associated antitumor activity. We show that human and mouse tumor cell-derived placental growth factor (PlGF) is a key determinant of the Dll4-Notch-induced vascular remodeling and tumor growth. In natural PlGF-expressing human tumors, inhibition of Dll4-Notch signaling markedly accelerated tumor growth by increasing blood perfusion in nonleaking tumor vasculatures. Conversely, in PlGF-negative tumors, Dll4 inhibition suppressed tumor growth by the formation of nonproductive and leaky vessels. Surprisingly, genetic inactivation of vascular endothelial growth factor receptor 1 (VEGFR1) completely abrogated the PlGF-modulated vascular remodeling and tumor growth, indicating a crucial role for VEGFR1-mediated signals in modulating Dll4-Notch functions. These findings provide mechanistic insights on PlGF-VEGFR1 signaling in the modulation of the Dll4-Notch pathway in angiogenesis and tumor growth, and have therapeutic implications of PlGF as a biomarker for predicting the antitumor benefits of Dll4 and Notch inhibitors.
  •  
4.
  • Ji, Hong, et al. (författare)
  • TNFR1 mediates TNF-alpha-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling
  • 2014
  • Ingår i: Nature Communications. - : Nature Publishing Group: Nature Communications. - 2041-1723. ; 5:4944
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation and lymphangiogenesis are two cohesively coupled processes that promote tumour growth and invasion. Here we report that TNF-alpha markedly promotes tumour lymphangiogenesis and lymphatic metastasis. The TNF-alpha-TNFR1 signalling pathway directly stimulates lymphatic endothelial cell activity through a VEGFR3-independent mechanism. However, VEGFR3-induced lymphatic endothelial cell tips are a prerequisite for lymphatic vessel growth in vivo, and a VEGFR3 blockade completely ablates TNF-alpha-induced lymphangiogenesis. Moreover, TNF-alpha-TNFR1-activated inflammatory macrophages produce high levels of VEGF-C to coordinately activate VEGFR3. Genetic deletion of TNFR1 (Tnfr1(-/-)) in mice or depletion of tumour-associated macrophages (TAMs) virtually eliminates TNF-alpha-induced lymphangiogenesis and lymphatic metastasis. Gain-of-function experiments show that reconstitution of Tnfr1(+/+) macrophages in Tnfr1(+/+) mice largely restores tumour lymphangiogenesis and lymphatic metastasis. These findings shed mechanistic light on the intimate interplay between inflammation and lymphangiogenesis in cancer metastasis, and propose therapeutic intervention of lymphatic metastasis by targeting the TNF-alpha-TNFR1 pathway.
  •  
5.
  • Marcotte, Harold, et al. (författare)
  • Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents Infection of Omicron lineages
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 121:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previ- ously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot suffi- ciently boost the mucosal secretory IgA response in uninfected individuals, particu- larly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgAl antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibod- ies, dimeric and secretory IgAl antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgAl form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secre- tory IgA delivered by nasal administration may potentially be exploited for the treatment Iand prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
  •  
6.
  • Wu, Biying, et al. (författare)
  • Megakaryocytes Mediate Hyperglycemia-Induced Tumor Metastasis
  • 2021
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 81:21, s. 5506-5522
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood glucose has long been established as a risk factor for tumor metastasis, yet the molecular mechanisms underlying this association have not been elucidated. Here we describe that hyperglycemia promotes tumor metastasis via increased platelet activity. Administration of glucose, but not fructose, reprogrammed the metabolism of megakaryocytes to indirectly prime platelets into a prometastatic phenotype with increased adherence to tumor cells. In megakaryocytes, a glucose metabolism-related gene array identified the mitochondrial molecular chaperone glucose-regulated protein 75 (GRP75) as a trigger for platelet activation and aggregation by stimulating the Ca2+-PKC alpha pathway. Genetic depletion of Glut1 in megakaryocytes blocked MYC-induced GRP75 expression. Pharmacologic blockade of platelet GRP75 compromised tumor-induced platelet activation and reduced metastasis. Moreover, in a pilot clinical study, drinking a 5% glucose solution elevated platelet GRP75 expression and activated platelets in healthy volunteers. Platelets from these volunteers promoted tumor metastasis in a plateletadoptive transfer mouse model. Together, under hyperglycemic conditions, MYC-induced upregulation of GRP75 in megakaryocytes increases platelet activation via the Ca2+-PKC alpha pathway to promote cancer metastasis, providing a potential new therapeutic target for preventing metastasis. Significance: This study provides mechanistic insights into a glucose-megakaryocyte-platelet axis that promotes metastasis and proposes an antimetastatic therapeutic approach by targeting the mitochondrial protein GRP75.
  •  
7.
  • Wu, Jing, et al. (författare)
  • Interleukin-33 is a Novel Immunosuppressor that Protects Cancer Cells from TIL Killing by a Macrophage-Mediated Shedding Mechanism
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 8:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Recognition of specific antigens expressed in cancer cells is the initial process of cytolytic T cell-mediated cancer killing. However, this process can be affected by other non-cancerous cellular components in the tumor microenvironment. Here, it is shown that interleukin-33 (IL-33)-activated macrophages protect melanoma cells from tumor-infiltrating lymphocyte-mediated killing. Mechanistically, IL-33 markedly upregulates metalloprotease 9 (MMP-9) expression in macrophages, which acts as a sheddase to trim NKG2D, an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, subsets of CD4+ T cells, iNKT cells, and gamma delta T cells. Further, MMP-9 also cleaves the MHC class I molecule, cell surface antigen-presenting complex molecules, expressed in melanoma cells. Consequently, IL-33-induced macrophage MMP-9 robustly mitigates the tumor killing-effect by T cells. Genetic and pharmacological loss-of-function of MMP-9 sheddase restore T cell-mediated cancer killing. Together, these data provide compelling in vitro and in vivo evidence showing novel mechanisms underlying the IL-33-macrophage-MMP-9 axis-mediated immune tolerance against cancer cells. Targeting each of these signaling components, including IL-33 and MMP-9 provides a new therapeutic paradigm for improving anticancer efficacy by immune therapy.
  •  
8.
  • Xie, Sisi, et al. (författare)
  • Dietary ketone body-escalated histone acetylation in megakaryocytes alleviates chemotherapy-induced thrombocytopenia
  • 2022
  • Ingår i: Science Translational Medicine. - : AMER ASSOC ADVANCEMENT SCIENCE. - 1946-6234 .- 1946-6242. ; 14:673
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemotherapy-induced thrombocytopenia (CIT) is a severe complication in patients with cancer that can lead to impaired therapeutic outcome and survival. Clinically, therapeutic options for CIT are limited by severe adverse effects and high economic burdens. Here, we demonstrate that ketogenic diets alleviate CIT in both animals and humans without causing thrombocytosis. Mechanistically, ketogenic diet-induced circulating beta-hydroxybutyrate (beta-OHB) increased histone H3 acetylation in bone marrow megakaryocytes. Gain- and loss-of-function experiments revealed a distinct role of 3-beta-hydroxybutyrate dehydrogenase (BDH)-mediated ketone body metabolism in promoting histone acetylation, which promoted the transcription of platelet biogenesis genes and induced thrombocytopoiesis. Genetic depletion of the megakaryocyte-specific ketone body transporter monocarboxylate transporter 1 (MCT1) or pharmacological targeting of MCT1 blocked beta-OHB-induced thrombocytopoiesis in mice. A ketogenesis-promoting diet alleviated CIT in mouse models. Moreover, a ketogenic diet modestly increased platelet counts without causing thrombocytosis in healthy volunteers, and a ketogenic lifestyle inversely correlated with CIT in patients with cancer. Together, we provide mechanistic insights into a ketone body-MCT1-BDH-histone acetylation-platelet biogenesis axis in megakaryocytes and propose a non-toxic, low-cost dietary intervention for combating CIT.
  •  
9.
  • Yang, Xiaojuan, et al. (författare)
  • Vascular endothelial growth factor-dependent spatiotemporal dual roles of placental growth factor in modulation of angiogenesis and tumor growth
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:34, s. 13932-13937
  • Tidskriftsartikel (refereegranskat)abstract
    • Placental growth factor (PIGF) remodels tumor vasculatures toward a normalized phenotype, which affects tumor growth, invasion and drug responses. However, the coordinative and spatiotemporal relation between PIGF and VEGF in modulation of tumor angiogenesis and vascular remodeling is less understood. Here we report that PlGF positively and negatively modulate tumor growth, angiogenesis, and vascular remodeling through a VEGF-dependent mechanism. In two independent tumor models, we show that PlGF inhibited tumor growth and angiogenesis and displayed a marked vascular remodeling effect, leading to normalized microvessels with infrequent vascular branches and increased perivascular cell coverage. Surprisingly, elimination of VEGF gene (i.e., VEGF-null) in PIGF-expressing tumors resulted in (i) accelerated tumor growth rates and angiogenesis and (ii) complete attenuation of PIGF-induced vascular normalization. Thus, PIGF positively and negatively modulates tumor growth, angiogenesis, and vascular remodeling through VEGF-dependent spatiotemporal mechanisms. Our data uncover molecular mechanisms underlying the complex interplay between PIGF and VEGF in modulation of tumor growth and angiogenesis, and have conceptual implication for antiangiogenic cancer therapy.
  •  
10.
  • Yang, Xiaojuan, et al. (författare)
  • VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:22, s. E2900-E2909
  • Tidskriftsartikel (refereegranskat)abstract
    • The biological functions of VEGF-B in cancer progression remain poorly understood. Here, we report that VEGF-B promotes cancer metastasis through the remodeling of tumor microvasculature. Knockdown of VEGF-B in tumors resulted in increased perivascular cell coverage and impaired pulmonary metastasis of human melanomas. In contrast, the gain of VEGF-B function in tumors led to pseudonormalized tumor vasculatures that were highly leaky and poorly perfused. Tumors expressing high levels of VEGF-B were more metastatic, although primary tumor growth was largely impaired. Similarly, VEGF-B in a VEGF-A-null tumor resulted in attenuated primary tumor growth but substantial pulmonary metastases. VEGF-B also led to highly metastatic phenotypes in Vegfr1 tk(-/-) mice and mice treated with anti-VEGF-A. These data indicate that VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism. High expression levels of VEGF-B in two large-cohort studies of human patients with lung squamous cell carcinoma and melanoma correlated with poor survival. Taken together, our findings demonstrate that VEGF-B is a vascular remodeling factor promoting cancer metastasis and that targeting VEGF-B may be an important therapeutic approach for cancer metastasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy