SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhu Dakai) srt2:(2020)"

Sökning: WFRF:(Zhu Dakai) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ji, Xuemei, et al. (författare)
  • Protein-altering germline mutations implicate novel genes related to lung cancer development
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Few germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio=8.82, P=1.18x10(-15)) and replication (adjusted OR=2.93, P=2.22x10(-3)) that is more pronounced in females (adjusted OR=6.81 and 3.19 and for discovery and replication). We observe an excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in discovery (adjusted OR=2.61, P=7.98x10(-22)) and replication datasets (adjusted OR=1.55, P=0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk. In lung cancer, relatively few germline mutations are known to impact risk. Here the authors looked at rare variants in 39,146 individuals and find novel germline mutations associated with risk, as well as implicating ATM and a new candidate gene for lung cancer risk.
  •  
2.
  • Luyapan, Jennifer, et al. (författare)
  • A new efficient method to detect genetic interactions for lung cancer GWAS
  • 2020
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies (GWAS) have proven successful in predicting genetic risk of disease using single-locus models; however, identifying single nucleotide polymorphism (SNP) interactions at the genome-wide scale is limited due to computational and statistical challenges. We addressed the computational burden encountered when detecting SNP interactions for survival analysis, such as age of disease-onset. To confront this problem, we developed a novel algorithm, called the Efficient Survival Multifactor Dimensionality Reduction (ES-MDR) method, which used Martingale Residuals as the outcome parameter to estimate survival outcomes, and implemented the Quantitative Multifactor Dimensionality Reduction method to identify significant interactions associated with age of disease-onset. Methods: To demonstrate efficacy, we evaluated this method on two simulation data sets to estimate the type I error rate and power. Simulations showed that ES-MDR identified interactions using less computational workload and allowed for adjustment of covariates. We applied ES-MDR on the OncoArray-TRICL Consortium data with 14,935 cases and 12,787 controls for lung cancer (SNPs = 108,254) to search over all two-way interactions to identify genetic interactions associated with lung cancer age-of-onset. We tested the best model in an independent data set from the OncoArray-TRICL data. Results: Our experiment on the OncoArray-TRICL data identified many one-way and two-way models with a single-base deletion in the noncoding region of BRCA1 (HR 1.24, P = 3.15 × 10–15), as the top marker to predict age of lung cancer onset. Conclusions: From the results of our extensive simulations and analysis of a large GWAS study, we demonstrated that our method is an efficient algorithm that identified genetic interactions to include in our models to predict survival outcomes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy