SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zimmerman D) srt2:(2000-2004)"

Sökning: WFRF:(Zimmerman D) > (2000-2004)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Grattoni, C.A, et al. (författare)
  • Polymers as relative permeability modifiers : adsorption and the dynamic formation of thick polyacrylamide layers
  • 2004
  • Ingår i: Journal of Petroleum Science and Engineering. - : Elsevier BV. - 0920-4105 .- 1873-4715. ; 45:3-4, s. 233-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Water production from oil and gas reservoirs is increasing worldwide. as more reservoirs are becoming mature. In order to control water production, polymers and gels are often injected into the formation to reduce the water permeability. These systems are known as relative permeability modifiers. Although these methods sometimes lead to significant cost savings, and many successful treatments have been reported, a wider application is hindered by the lack of understanding of the basic mechanisms of permeability modification by polymers. This paper presents some pore-level and basic studies on polymers, with the aim of providing a better understanding of these systems. Experiments have been performed in micro-scale glass flow models, and atomic force microscopy was used to validate the flow observations. The role of adsorption and flow of polyacrylamides in the formation of thick layers is described. The size of statically adsorbed polyacrylamide layers depends on the polymer characteristics (molecular weight, degree of hydrolysis, salinity, etc.), but is less than 250 nm for all the systems studied. On the other hand, dynamically formed polymer layers can reach several thousands of nanometres. The existence of these thick polymer layers is shown here, to our knowledge for the first time, through flow experiments and AFM measurements. While mechanical retention cannot occur under our experimental conditions, the mechanism of adsorption-entanglement gives a reasonable mechanistic description of the dynamic formation of thick layers. The implications of these mechanisms in the modelling of the flow and selection of polymer systems are discussed.
  •  
5.
  • Lock, P.A., et al. (författare)
  • Comparison of methods for upscaling permeability from the pore scale to the core scale
  • 2004
  • Ingår i: Journal of Hydraulic Research. - : Informa UK Limited. - 0022-1686 .- 1814-2079. ; 42:SI, s. 3-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Several methods are compared for estimating the core-scale permeability of a rock whose pore space is idealized as consisting of a cubic network of pore tubes having a distribution of pore-scale hydraulic conductances. The conductance distribution of the pores is estimated from image analysis of scanning electron micrographs of rock sections. An explicit solution of the network equations is used as a benchmark to establish the "exact" macroscopic permeability. The other three upscaling methods used are Kirkpatrick's isotropic effective medium approximation, Bernasconi's anisotropic effective medium approximation, and the generalized perturbation ansatz (GPA) proposed by Gelhar and Axness. The analysis is carried out on a suite of petroleum reservoir sandstones from the North Sea, with measured core-scale permeabilities ranging from 20 to 500 mD. The log-variances of the pore-scale hydraulic conductance distribution were in the range of 2-3. The predictions of both the Kirkpatrick equation and the GPA are in each case within 10% of those computed by explicit network calculation, and all permeability predictions are generally within a factor of two of the core-scale values measured in the laboratory.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy