SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Energiteknik) srt2:(2010-2019)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Energiteknik) > (2010-2019)

  • Resultat 1-10 av 6148
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lejon, Marcus, 1986, et al. (författare)
  • Multidisciplinary Design of a Three Stage High Speed Booster
  • 2017
  • Ingår i: ASME Turbo Expo 2017: Turbine Technical Conference and Exposition. - : ASME Press. ; 2B-2017
  • Konferensbidrag (refereegranskat)abstract
    • The paper describes a multidisciplinary conceptual design of an axial compressor, targeting a three stage, high speed, high efficiency booster with a design pressure ratio of 2.8. The paper is outlined in a step wise manner starting from basic aircraft and engine thrust requirements, establishing the definition of the high speed booster interface points and its location in the engine. Thereafter, the aerodynamic 1D/2D design is carried out using the commercial throughflow tool SC90C. A number of design aspects are described, and the steps necessary to arrive at the final design are outlined. The SC90C based design is then carried over to a CFD based conceptual design tool AxCent, in which a first profiling is carried out based on a multiple circular arc blade definition. The design obtained at this point is referred to as the VINK compressor. The first stage of the compressor is then optimized using an in-house optimization tool, where the objective functions are evaluated from detailed CFD calculations. The design is improved in terms of efficiency and in terms of meeting the design criteria put on the stage in the earlier design phases. Finally, some aeromechanical design aspects of the first stage are considered. The geometry and inlet boundary conditions of the compressor are shared with the turbomachinery community on a public server. This is intended to be used as a test case for further optimization and analysis.
  •  
3.
  • Kyprianidis, Konstantinos, 1984, et al. (författare)
  • Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
  • 2014
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 136:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, along with the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. The thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio of 1.18 at hot-day top of climb conditions. At ISA midcruise conditions a specific thrust of 86 m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 56%, and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000 lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines. The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions, primarily because this design variable affects core efficiency at midcruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. The analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor do they account for losses in the bypass duct and jet pipe, while a relatively detailed engine performance model, such as the one utilized in this study, does. Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberized-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilized to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.
  •  
4.
  • Thulin, Oskar, 1987, et al. (författare)
  • First and Second Law Analysis of Radical Intercooling Concepts
  • 2018
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 140:8, s. 081201-081201-10
  • Tidskriftsartikel (refereegranskat)abstract
    • An exergy framework was developed taking into consideration a detailed analysis of the heat exchanger (HEX) (intercooler (IC)) component irreversibilities. Moreover, it was further extended to include an adequate formulation for closed systems, e.g., a secondary cycle (SC), moving with the aircraft. Afterward, the proposed framework was employed to study two radical intercooling concepts. The first proposed concept uses already available wetted surfaces, i.e., nacelle surfaces, to reject the core heat and contributes to an overall drag reduction. The second concept uses the rejected core heat to power a secondary organic Rankine cycle and produces useful power to the aircraft-engine system. Both radical concepts are integrated into a high bypass ratio (BPR) turbofan engine, with technology levels assumed to be available by year 2025. A reference intercooled cycle incorporating a HEX in the bypass (BP) duct is established for comparison. Results indicate that the radical intercooling concepts studied in this paper show similar performance levels to the reference cycle. This is mainly due to higher irreversibility rates created during the heat exchange process. A detailed assessment of the irreversibility contributors, including the considered HEXs and SC, is made. A striking strength of the present analysis is the assessment of the component-level irreversibility rate and its contribution to the overall aero-engine losses.
  •  
5.
  • Thulin, Oskar, 1987 (författare)
  • On the Analysis of Energy Efficient Aircraft Engines
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aero engine performance analysis is highly multidimensional using various measures of component performance such as turbomachinery and mechanical efficiencies, and pressure loss coefficients. Using conventional performance analysis, relying on only the laws of thermodynamics, it is possible to understand how the performance parameters affect the component performance, but it is difficult to directly compare the magnitude of various loss sources. A comprehensive framework has been detailed to analyze aero engine loss sources in one common currency. As the common currency yields a measure of the lost work potential in every component, it is used to relate the component performance to the system performance. The theory includes a more detailed layout of all the terms that apply to a propulsion unit than presented before. The framework is here adopted to real gases to be used in state of the art performance codes. Additionally, the framework is further developed to enable detailed studies of two radical intercooling concepts that either rejects the core heat in the outer nacelle surfaces or uses the core heat for powering of a secondary cycle. The theory is also extended upon by presenting the installed rational efficiency, a true measure of the propulsion subsystem performance, including the installation effects of the propulsion subsystem as it adds weight and drag that needs to be compensated for in the performance assessment.
  •  
6.
  •  
7.
  • Binder, Christian, 1988-, et al. (författare)
  • Phosphor Thermometry for In-Cylinder Surface Temperature Measurements in Diesel Engines
  • 2019
  • Ingår i: Measurement science and technology. - 0957-0233 .- 1361-6501.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Surface temperature measurements in technically relevant applications can be very  hallenging and yet of great importance. Phosphor thermometry is a temperature measurement technique that has previously been employed in technically relevant applications to obtain surface temperature. The technique is based on temperature-dependent changes in a phosphor’s luminescence. To improve the accuracy and precision of temperature measurements with this technique, the present study considers, by way of example, the impact of conditions inside the cylinder of a diesel engine on decay time based phosphor thermometry. After an initial, general assessment of the effect of prevailing measurement conditions, this research investigates errors caused by soot luminosity, extinction, signal trapping and changes of phosphors’ luminescence properties due to exposure to the harsh environment. Furthermore, preferable properties of phosphors which are suitable for in-cylinder temperature measurements are discussed. 16 phosphors are evaluated, including four which – to the authors’ knowledge –have previously not been used in thermometry. Results indicate that errors due to photocathode bleaching, extinction, signal trapping and changes of luminescence properties may cause an erroneous temperature evaluation with temperature errors in the order of serval tens of Kelvin.
  •  
8.
  • Johansson, Anders, 1985, et al. (författare)
  • Experimental Investigation of Soot in a Spray-Guided Single Cylinder GDI Engine Operating in a Stratified Mode
  • 2013
  • Ingår i: SAE Technical Papers. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International. - 0148-7191 .- 2688-3627. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Forthcoming reductions in legal limits for emissions of particle matter (PM) from direct injection engines have increased the need for understanding particle distributions in the engines and the factors affecting them. Therefore, in the presented study the influence on PM-emissions of potentially important factors (fuel injection pressure, load, speed and 50% mass fraction burned phasing) on particle mass, number and size distributions were experimentally investigated. The experimental system was a spray-guided, direct injection, single-cylinder research engine operated in stratified charge mode (using gasoline with 10% ethanol as fuel), under five load and speed settings that are appropriate for stratified combustion. The particle distributions obtained from operating the engine in homogeneous combustion and stratified combustion modes were also compared. The particle distributions were measured using a Cambustion DMS500 fast particle analyzer in combination with a Dekati FPS4000 fine particle sampler and a thermodenuder in all tests except the comparison of distributions under stratified and homogeneous combustion conditions. The sampling system was designed to remove as much of the volatile unburned hydrocarbons as possible in order to sample mostly solid particles. Under all of the stratified operating conditions studied, the results indicate that the particle distribution has a characteristic shape with a tail and one large peak. The operating speed significantly affected the size of the largest particles and the quantity of the particles represented by the tail. An almost linear, positive relationship was found between the load and particle number. Increasing the fuel injection pressure reduced particle numbers whereas combustion phasing had no significant observed effects. More particles were generated in stratified combustion mode than in homogeneous mode.
  •  
9.
  • Gantasala, Sudhakar, et al. (författare)
  • Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades
  • 2019
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Wind turbines installed in cold-climate regions are prone to the risks of ice accumulation which affects their aeroelastic behavior. The studies carried out on this topic so far considered icing in a few sections of the blade, mostly located in the outer part of the blade, and their influence on the loads and power production of the turbine are only analyzed. The knowledge about the influence of icing in different locations of the blade and asymmetrical icing of the blades on loads, power, and vibration behavior of the turbine is still not matured. To improve this knowledge, multiple simulation cases are needed to run with different ice accumulations on the blade considering structural and aerodynamic property changes due to ice. Such simulations can be easily run by automating the ice shape creation on aerofoil sections and two-dimensional (2-D) Computational Fluid Dynamics (CFD) analysis of those sections. The current work proposes such methodology and it is illustrated on the National Renewable Energy Laboratory (NREL) 5 MW baseline wind turbine model. The influence of symmetrical icing in different locations of the blade and asymmetrical icing of the blade assembly is analyzed on the turbine’s dynamic behavior using the aeroelastic computer-aided engineering tool FAST. The outer third of the blade produces about 50% of the turbine’s total power and severe icing in this part of the blade reduces power output and aeroelastic damping of the blade’s flapwise vibration modes. The increase in blade mass due to ice reduces its natural frequencies which can be extracted from the vibration responses of the turbine operating under turbulent wind conditions. Symmetrical icing of the blades reduces loads acting on the turbine components, whereas asymmetrical icing of the blades induces loads and vibrations in the tower, hub, and nacelle assembly at a frequency synchronous to rotational speed of the turbine.
  •  
10.
  • Wadekar, Sandip, 1989 (författare)
  • Large-eddy simulation on the effects of fuel injection pressure on gasoline spray characteristics
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing the injection pressure in gasoline direct injection engines has a substantial potential to reduce emissions while maintaining high efficiency in spark ignition engines. Present gasoline injectors operate at pressures of 20 to 30 MPa. However, the use of higher-pressure fuel injection (40 to 60 MPa or more) could potentially reduce emissions and increase fuel efficiency. To fully exploit the capabilities of high-pressure fuel injection technology, a fundamental understanding of gasoline spray characteristics and behavior at such high injection pressures is vital. Such an understanding could also be used to further model development and facilitate the integration of advanced injection systems into future gasoline engines. This work presents numerical simulation studies on gasoline sprays formed at fuel injection pressures between 40 and 150 MPa. Three nozzle hole shapes (divergent, convergent, and straight) with different configurations (6 or 10 holes) were considered in the simulation to determine how a nozzle geometry affects spray formation. The numerical calculations were performed in a constant volume spray chamber under non-vaporizing conditions to best match the experimental setup. The gas flow was modeled using a large-eddy simulation (LES) approach, while a standard Lagrangian model was utilized to describe the liquid fuel spray. Spray atomization was modeled using the Kelvin Helmholtz –Rayleigh Taylor (KH-RT) atomization model, with the droplet size distribution being assumed to follow a Rosin-Rammler distribution function. Simulation results for the spray liquid penetration length are validated with experimental findings under different fuel injection pressures. Afterwards, an arithmetic mean droplet diameter (D10) and a Sauter mean droplet diameter (D32) as a function of pressure are compared against the measured droplet diameters. Simulated drop size distributions are presented and compared with measured droplet sizes. The results indicate that high fuel injection pressures increase the liquid penetration length and significantly reduce droplet sizes, and that nozzle shape significantly affects spray characteristics and spray formation. In addition, raising the injection pressure from 40 to 150 MPa with a divergent nozzle was predicted to reduce the SMD from 13.4 to 7.5 μm while increasing the probability of observing droplet diameters of 5-10 μm from 40% to 72%. Similar results were obtained for the other nozzle shapes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 6148
Typ av publikation
tidskriftsartikel (3098)
konferensbidrag (1935)
doktorsavhandling (276)
rapport (259)
bokkapitel (227)
licentiatavhandling (161)
visa fler...
forskningsöversikt (85)
annan publikation (39)
bok (28)
patent (20)
samlingsverk (redaktörskap) (15)
proceedings (redaktörskap) (3)
konstnärligt arbete (2)
recension (2)
visa färre...
Typ av innehåll
refereegranskat (4863)
övrigt vetenskapligt/konstnärligt (1201)
populärvet., debatt m.m. (84)
Författare/redaktör
Sundén, Bengt (428)
Yan, Jinyue (144)
Li, Hailong, 1976- (119)
Johnsson, Filip, 196 ... (115)
Ji, Xiaoyan (106)
Zhang, Xingxing (102)
visa fler...
Lyngfelt, Anders, 19 ... (94)
Yan, Jinyue, 1959- (94)
Zhu, Bin (92)
Yuan, Jinliang (88)
Wu, Zan (83)
Xie, Gongnan (81)
Laumert, Björn (80)
Thunman, Henrik, 197 ... (79)
Andersson, Martin (76)
Andersson, Klas, 197 ... (72)
Lu, Xiaohua (68)
Öhman, Marcus (67)
Normann, Fredrik, 19 ... (65)
Umeki, Kentaro (64)
Li, Hailong (63)
Yang, Weihong (62)
Fransson, Torsten (60)
Mattisson, Tobias, 1 ... (60)
Aldén, Marcus (60)
Pallarès, David, 197 ... (60)
Boström, Dan (59)
Wang, Lei (58)
Kudinov, Pavel (57)
Harvey, Simon, 1965 (56)
Lundgren, Joakim (56)
Anglart, Henryk (55)
Bai, Xue-Song (55)
Tunestål, Per (53)
Tunér, Martin (52)
Li, Zhongshan (51)
Martin, Viktoria (50)
Rydén, Magnus, 1975 (48)
Thern, Marcus (48)
Bales, Chris (48)
Wiinikka, Henrik (48)
Bollen, Math (47)
Leckner, Bo G, 1936 (47)
Kyprianidis, Konstan ... (46)
Skoglund, Nils (45)
Blasiak, Wlodzimierz (45)
Palm, Björn (44)
Khodabandeh, Rahmato ... (44)
Genrup, Magnus (42)
Villanueva, Walter (42)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (1802)
Chalmers tekniska högskola (1489)
Lunds universitet (1083)
Luleå tekniska universitet (711)
Mälardalens universitet (654)
Högskolan Dalarna (249)
visa fler...
RISE (217)
Uppsala universitet (212)
Umeå universitet (178)
Högskolan i Gävle (129)
Linköpings universitet (117)
Högskolan i Halmstad (86)
Karlstads universitet (75)
Linnéuniversitetet (63)
Sveriges Lantbruksuniversitet (51)
Stockholms universitet (29)
Göteborgs universitet (27)
Högskolan i Borås (23)
Jönköping University (18)
Högskolan Väst (10)
Malmö universitet (6)
Mittuniversitetet (6)
Högskolan i Skövde (5)
Blekinge Tekniska Högskola (5)
VTI - Statens väg- och transportforskningsinstitut (5)
IVL Svenska Miljöinstitutet (5)
Högskolan Kristianstad (3)
Örebro universitet (2)
Naturvårdsverket (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (5913)
Svenska (216)
Persiska (6)
Kinesiska (5)
Norska (2)
Tyska (1)
visa fler...
Franska (1)
Ryska (1)
Spanska (1)
Polska (1)
Portugisiska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Teknik (6148)
Naturvetenskap (515)
Samhällsvetenskap (95)
Lantbruksvetenskap (39)
Medicin och hälsovetenskap (6)
Humaniora (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy