SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rothmaier F.) "

Sökning: WFRF:(Rothmaier F.)

  • Resultat 21-30 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Abbasi, R, et al. (författare)
  • Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:20, s. 201302-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.
  •  
22.
  • Abbasi, R., et al. (författare)
  • Low energy event reconstruction in IceCube DeepCore
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 82:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The reconstruction of event-level information, such as the direction or energy of a neutrino interacting in IceCube DeepCore, is a crucial ingredient to many physics analyses. Algorithms to extract this high level information from the detector's raw data have been successfully developed and used for high energy events. In this work, we address unique challenges associated with the reconstruction of lower energy events in the range of a few to hundreds of GeV and present two separate, state-of-the-art algorithms. One algorithm focuses on the fast directional reconstruction of events based on unscattered light. The second algorithm is a likelihood-based multipurpose reconstruction offering superior resolutions, at the expense of larger computational cost.
  •  
23.
  • Abbasi, R., et al. (författare)
  • Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy
  • 2010
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 33:5-6, s. 277-286
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at similar to 5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background. (C) 2010 Elsevier B.V. All rights reserved.
  •  
24.
  • Abbasi, R., et al. (författare)
  • Measurement of the anisotropy of cosmic-ray arrival directions with icecube
  • 2010
  • Ingår i: The Astrophysical Journal Letters. - 2041-8205. ; 718, s. L194-L198
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of similar to 20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 +/- 0.2 stat. +/- 0.8 syst.) x 10(-4).
  •  
25.
  • Abbasi, R., et al. (författare)
  • Multi-messenger searches via IceCube's high-energy neutrinos and gravitational-wave detections of LIGO/Virgo
  • 2022
  • Ingår i: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Konferensbidrag (refereegranskat)abstract
    • We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo's GWTC-2 catalog using IceCube's neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event.
  •  
26.
  • Abbasi, R., et al. (författare)
  • Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors
  • 2012
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 85, s. 042002-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50-5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.
  •  
27.
  • Abbasi, R., et al. (författare)
  • Non-standard neutrino interactions in IceCube
  • 2021
  • Ingår i: The European Physical Society Conference on High Energy Physics. - Trieste : International School for Advanced Studies.
  • Konferensbidrag (refereegranskat)abstract
    • Non-standard neutrino interactions (NSI) may arise in various types of new physics. Their existence would change the potential that atmospheric neutrinos encounter when traversing Earth matter and hence alter their oscillation behavior. This imprint on coherent neutrino forward scattering can be probed using high-statistics neutrino experiments such as IceCube and its low-energy extension, DeepCore. Both provide extensive data samples that include all neutrino flavors, with oscillation baselines between tens of kilometers and the diameter of the Earth.DeepCore event energies reach from a few GeV up to the order of 100 GeV - which marks the lower threshold for higher energy IceCube atmospheric samples, ranging up to 10 TeV.In DeepCore data, the large sample size and energy range allow us to consider not only flavor-violating and flavor-nonuniversal NSI in the μ−τ sector, but also those involving electron flavor.The effective parameterization used in our analyses is independent of the underlying model and the new physics mass scale. In this way, competitive limits on several NSI parameters have been set in the past. The 8 years of data available now result in significantly improved sensitivities. This improvement stems not only from the increase in statistics but also from substantial improvement in the treatment of systematic uncertainties, background rejection and event reconstruction.
  •  
28.
  • Abbasi, R., et al. (författare)
  • Observation of anisotropy in the arrival directions of galactic cosmic rays at multiple angular scales with IceCube
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 740:1, s. 16-
  • Tidskriftsartikel (refereegranskat)abstract
    • Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15 degrees and 30 degrees. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension alpha = 122 degrees.4 and declination d = -47 degrees.4), extends over at least 20 degrees in right ascension and has a post-trials significance of 5.3 sigma. The origin of this anisotropy is still unknown.
  •  
29.
  • Abbasi, R., et al. (författare)
  • Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for 10–1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of GRBs had a p-value of 0.65 after all trial corrections. The binomial test found a group consisting only of GRB bn 140807500 and no additional GRBs. The neutrino limits of this work complement those obtained by IceCube at tera electronvolt to peta electronvolt energies. We compare our findings for the large set of GRBs as well as GRB 221009A to the sub-photospheric neutron-proton collision model and find that GRB 221009A provides the most constraining limit on baryon loading. For a jet Lorentz factor of 300 (800), the baryon loading on GRB 221009A is lower than 3.85 (2.13) at a 90% confidence level.
  •  
30.
  • Abbasi, R., et al. (författare)
  • Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector
  • 2011
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:8, s. 082001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory is a 1 km(3) detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C. L. upper limit on the normalization of an E(-2) astrophysical nu(mu) flux of 8.9 x 10(-9) GeV cm(-2) s(-1) sr(-1). The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 54

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy