SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1050 9631 OR L773:1098 1063 "

Sökning: L773:1050 9631 OR L773:1098 1063

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Björefeldt, Andreas, 1982, et al. (författare)
  • Human cerebrospinal fluid promotes spontaneous gamma oscillations in the hippocampus in vitro
  • 2020
  • Ingår i: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 30:2, s. 101-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma oscillations (30-80 Hz) are fast network activity patterns frequently linked to cognition. They are commonly studied in hippocampal brain slices in vitro, where they can be evoked via pharmacological activation of various receptor families. One limitation of this approach is that neuronal activity is studied in a highly artificial extracellular fluid environment, as provided by artificial cerebrospinal fluid (aCSF). Here, we examine the influence of human cerebrospinal fluid (hCSF) on kainate-evoked and spontaneous gamma oscillations in mouse hippocampus. We show that hCSF, as compared to aCSF of matched electrolyte and glucose composition, increases the power of kainate-evoked gamma oscillations and induces spontaneous gamma activity in areas CA3 and CA1 that is reversed by washout. Bath application of atropine entirely abolished hCSF-induced gamma oscillations, indicating critical contribution from muscarinic acetylcholine receptor-mediated signaling. In separate whole-cell patch clamp recordings from rat hippocampus, hCSF increased theta resonance frequency and strength in pyramidal cells along with enhancement of h-current (I-h) amplitude. We found no evidence of intrinsic gamma frequency resonance at baseline (aCSF) among fast-spiking interneurons, and this was not altered by hCSF. However, hCSF increased the excitability of fast-spiking interneurons, which likely contributed to gamma rhythmogenesis. Our findings show that hCSF promotes network gamma oscillations in the hippocampus in vitro and suggest that neuromodulators distributed in CSF could have significant influence on neuronal network activity in vivo.
  •  
8.
  • de Flores, Robin, et al. (författare)
  • Characterization of hippocampal subfields using ex vivo MRI and histology data : Lessons for in vivo segmentation
  • 2020
  • Ingår i: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 30:6, s. 545-564
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.
  •  
9.
  •  
10.
  • Ferreira, Daniel, et al. (författare)
  • The interactive effect of demographic and clinical factors on hippocampal volume : A multicohort study on 1958 cognitively normal individuals
  • 2017
  • Ingår i: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 27:6, s. 653-667
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is characterized by hippocampal atrophy. Other factors also influence the hippocampal volume, but their interactive effect has not been investigated before in cognitively healthy individuals. The aim of this study is to evaluate the interactive effect of key demographic and clinical factors on hippocampal volume, in contrast to previous studies frequently investigating these factors in a separate manner. Also, to investigate how comparable the control groups from ADNI, AIBL, and AddNeuroMed are with five population-based cohorts. In this study, 1958 participants were included (100 AddNeuroMed, 226 ADNI, 155 AIBL, 59 BRC, 295 GENIC, 279 BioFiNDER, 398 PIVUS, and 446 SNAC-K). ANOVA and random forest were used for testing between-cohort differences in demographic-clinical variables. Multiple regression was used to study the influence of demographic-clinical variables on hippocampal volume. ANCOVA was used to analyze whether between-cohort differences in demographic-clinical variables explained between-cohort differences in hippocampal volume. Age and global brain atrophy were the most important variables in explaining variability in hippocampal volume. These variables were not only important themselves but also in interaction with gender, education, MMSE, and total intracranial volume. AddNeuroMed, ADNI, and AIBL differed from the population-based cohorts in several demographic-clinical variables that had a significant effect on hippocampal volume. Variability in hippocampal volume in individuals with normal cognition is high. Differences that previously tended to be related to disease mechanisms could also be partly explained by demographic and clinical factors independent from the disease. Furthermore, cognitively normal individuals especially from ADNI and AIBL are not representative of the general population. These findings may have important implications for future research and clinical trials, translating imaging biomarkers to the general population, and validating current diagnostic criteria for Alzheimer's disease and predementia stages.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy