SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2542 5196 "

Sökning: L773:2542 5196

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gasparrini, Antonio, et al. (författare)
  • Projections of temperature-related excess mortality under climate change scenarios
  • 2017
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 1:9, s. e360-e367
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes.Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (-3·0 to 9·3) in Central America to 12·7% (-4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.
  •  
3.
  • Laine, Jessica E., et al. (författare)
  • Co-benefits from sustainable dietary shifts for population and environmental health : an assessment from a large European cohort study
  • 2021
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 5:11, s. 786-796
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Unhealthy diets, the rise of non-communicable diseases, and the declining health of the planet are highly intertwined, where food production and consumption are major drivers of increases in greenhouse gas emissions, substantial land use, and adverse health such as cancer and mortality. To assess the potential co-benefits from shifting to more sustainable diets, we aimed to investigate the associations of dietary greenhouse gas emissions and land use with all-cause and cause-specific mortality and cancer incidence rates. Methods: Using data from 443 991 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, a multicentre prospective cohort, we estimated associations between dietary contributions to greenhouse gas emissions and land use and all-cause and cause-specific mortality and incident cancers using Cox proportional hazards regression models. The main exposures were modelled as quartiles. Co-benefits, encompassing the potential effects of alternative diets on all-cause mortality and cancer and potential reductions in greenhouse gas emissions and land use, were estimated with counterfactual attributable fraction intervention models, simulating potential effects of dietary shifts based on the EAT–Lancet reference diet. Findings: In the pooled analysis, there was an association between levels of dietary greenhouse gas emissions and all-cause mortality (adjusted hazard ratio [HR] 1·13 [95% CI 1·10–1·16]) and between land use and all-cause mortality (1·18 [1·15–1·21]) when comparing the fourth quartile to the first quartile. Similar associations were observed for cause-specific mortality. Associations were also observed between all-cause cancer incidence rates and greenhouse gas emissions, when comparing the fourth quartile to the first quartile (adjusted HR 1·11 [95% CI 1·09–1·14]) and between all-cause cancer incidence rates and land use (1·13 [1·10–1·15]); however, estimates differed by cancer type. Through counterfactual attributable fraction modelling of shifts in levels of adherence to the EAT–Lancet diet, we estimated that up to 19–63% of deaths and up to 10–39% of cancers could be prevented, in a 20-year risk period, by different levels of adherence to the EAT–Lancet reference diet. Additionally, switching from lower adherence to the EAT–Lancet reference diet to higher adherence could potentially reduce food-associated greenhouse gas emissions up to 50% and land use up to 62%. Interpretation: Our results indicate that shifts towards universally sustainable diets could lead to co-benefits, such as minimising diet-related greenhouse gas emissions and land use, reducing the environmental footprint, aiding in climate change mitigation, and improving population health. Funding: European Commission (DG-SANCO), the International Agency for Research on Cancer (IARC), MRC Early Career Fellowship (MR/M501669/1).
  •  
4.
  • Ran, Ylva, et al. (författare)
  • Environmental assessment of diets: overview and guidance on indicator choice
  • 2024
  • Ingår i: The Lancet Planetary Health. - : Elsevier BV. - 2542-5196. ; 8:3, s. e172-e187
  • Forskningsöversikt (refereegranskat)abstract
    • Comprehensive but interpretable assessment of the environmental performance of diets involves choosing a set of appropriate indicators. Current knowledge and data gaps on the origin of dietary foodstuffs restrict use of indicators relying on site-specific information. This Personal View summarises commonly used indicators for assessing the environmental performance of diets, briefly outlines their benefits and drawbacks, and provides recommendations on indicator choices for actors across multiple fields involved in activities that include the environmental assessment of diets. We then provide recommendations on indicator choices for actors across multiple fields involved in activities that use environmental assessments, such as health and nutrition experts, policy makers, decision makers, and private-sector and public-sector sustainability officers. We recommend that environmental assessment of diets should include indicators for at least the five following areas: climate change, biosphere integrity, blue water consumption, novel entities, and impacts on natural resources (especially wild fish stocks), to capture important environmental trade-offs. If more indicators can be handled in the assessment, indicators to capture impacts related to land use quantity and quality and green water consumption should be used. For ambitious assessments, indicators related to biogeochemical flows, stratospheric ozone depletion, and energy use can be added.
  •  
5.
  • Ran, Ylva, et al. (författare)
  • Environmental assessment of diets: overview and guidance on indicator choice
  • 2024
  • Ingår i: The Lancet Planetary Health. - : ELSEVIER SCI LTD. - 2542-5196. ; 8:3, s. e172-e187
  • Forskningsöversikt (refereegranskat)abstract
    • Comprehensive but interpretable assessment of the environmental performance of diets involves choosing a set of appropriate indicators. Current knowledge and data gaps on the origin of dietary foodstuffs restrict use of indicators relying on site-specific information. This Personal View summarises commonly used indicators for assessing the environmental performance of diets, briefly outlines their benefits and drawbacks, and provides recommendations on indicator choices for actors across multiple fields involved in activities that include the environmental assessment of diets. We then provide recommendations on indicator choices for actors across multiple fields involved in activities that use environmental assessments, such as health and nutrition experts, policy makers, decision makers, and private-sector and public-sector sustainability officers. We recommend that environmental assessment of diets should include indicators for at least the five following areas: climate change, biosphere integrity, blue water consumption, novel entities, and impacts on natural resources (especially wild fish stocks), to capture important environmental trade-offs. If more indicators can be handled in the assessment, indicators to capture impacts related to land use quantity and quality and green water consumption should be used. For ambitious assessments, indicators related to biogeochemical flows, stratospheric ozone depletion, and energy use can be added.
  •  
6.
  • Ran, Ylva, et al. (författare)
  • Environmental assessment of diets: overview and guidance on indicator choice
  • 2024
  • Ingår i: The Lancet Planetary Health. - : ELSEVIER SCI LTD. - 2542-5196. ; 8:3, s. e172-e187
  • Tidskriftsartikel (refereegranskat)abstract
    • Comprehensive but interpretable assessment of the environmental performance of diets involves choosing a set of appropriate indicators. Current knowledge and data gaps on the origin of dietary foodstuffs restrict use of indicators relying on site-specific information. This Personal View summarises commonly used indicators for assessing the environmental performance of diets, briefly outlines their benefits and drawbacks, and provides recommendations on indicator choices for actors across multiple fields involved in activities that include the environmental assessment of diets. We then provide recommendations on indicator choices for actors across multiple fields involved in activities that use environmental assessments, such as health and nutrition experts, policy makers, decision makers, and privatesector and public-sector sustainability officers. We recommend that environmental assessment of diets should include indicators for at least the five following areas: climate change, biosphere integrity, blue water consump tion, novel entities, and impacts on natural resources (especially wild fish stocks), to capture important environ mental trade-offs. If more indicators can be handled in the assessment, indicators to capture impacts related to land use quantity and quality and green water consumption should be used. For ambitious assessments, indicators related to biogeochemical flows, stratospheric ozone depletion, and energy use can be added.
  •  
7.
  •  
8.
  •  
9.
  • Arisco, Nicholas J, et al. (författare)
  • The effect of extreme temperature and precipitation on cause-specific deaths in rural Burkina Faso : a longitudinal study
  • 2023
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 7:6, s. e478-e489
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Extreme weather is becoming more common due to climate change and threatens human health through climate-sensitive diseases, with very uneven effects around the globe. Low-income, rural populations in the Sahel region of west Africa are projected to be severely affected by climate change. Climate-sensitive disease burdens have been linked to weather conditions in areas of the Sahel, although comprehensive, disease-specific empirical evidence on these relationships is scarce. In this study, we aim to provide an analysis of the associations between weather conditions and cause-specific deaths over a 16-year period in Nouna, Burkina Faso.Methods: In this longitudinal study, we used de-identified, daily cause-of-death data from the Health and Demographic Surveillance System led by the Centre de Recherche en Santé de Nouna (CRSN) in the National Institute of Public Health of Burkina Faso, to assess temporal associations between daily and weekly weather conditions (maximum temperature and total precipitation) and deaths attributed to specific climate-sensitive diseases. We implemented distributed-lag zero-inflated Poisson models for 13 disease-age groups at daily and weekly time lags. We included all deaths from climate-sensitive diseases in the CRSN demographic surveillance area from Jan 1, 2000 to Dec 31, 2015 in the analysis. We report the exposure–response relationships at percentiles representative of the exposure distributions of temperature and precipitation in the study area.Findings: Of 8256 total deaths in the CRSN demographic surveillance area over the observation period, 6185 (74·9%) were caused by climate-sensitive diseases. Deaths from communicable diseases were most common. Heightened risk of death from all climate-sensitive communicable diseases, and malaria (both across all ages and in children younger than 5 years), was associated with 14-day lagged daily maximum temperatures at or above 41·1°C, the 90th percentile of daily maximum temperatures, compared with 36·4°C, the median (all communicable diseases: 41·9°C relative risk [RR] 1·38 [95% CI 1·08–1·77], 42·8°C 1·57 [1·13–2·18]; malaria all ages: 41·1°C 1·47 [1·05–2·05], 41·9°C 1·78 [1·21–2·61], 42·8°C 2·35 [1·37–4·03]; malaria younger than 5 years: 41·9°C 1·67 [1·02–2·73]). Heightened risk of death from communicable diseases was also associated with 14-day lagged total daily precipitation at or below 0·1 cm, the 49th percentile of total daily precipitation, compared with 1·4 cm, the median (all communicable diseases: 0·0 cm 1·04 [1·02–1·07], 0·1 cm 1·01 [1·006–1·02]; malaria all ages: 0·0 cm 1·04 [1·01–1·08], 0·1 cm 1·02 [1·00–1·03]; malaria younger than 5 years: 0·0 cm 1·05 [1·01–1·10], 0·1 cm 1·02 [1·00–1·04]). The only significant association with a non-communicable disease outcome was a heightened risk of death from climate-sensitive cardiovascular diseases in individuals aged 65 years and older associated with 7-day lagged daily maximum temperatures at or above 41·9°C (41·9°C 2·25 [1·06–4·81], 42·8°C 3·68 [1·46–9·25]). Over 8 cumulative weeks, we found that the risk of death from communicable diseases was heightened at all ages from temperatures at or above 41·1°C (41·1°C 1·23 [1·05–1·43], 41·9°C 1·30 [1·08–1·56], 42·8°C 1·35 [1·09–1·66]) and risk of death from malaria was heightened by precipitation at or above 45·3 cm (all ages: 45·3 cm 1·68 [1·31–2·14], 61·6 cm 1·72 [1·27–2·31], 87·7 cm 1·72 [1·16–2·55]; children younger than 5 years: 45·3 cm 1·81 [1·36–2·41], 61·6 cm 1·82 [1·29–2·56], 87·7 cm 1·93 [1·24–3·00]).Interpretation: Our results indicate a high burden of death related to extreme weather in the Sahel region of west Africa. This burden is likely to increase with climate change. Climate preparedness programmes—such as extreme weather alerts, passive cooling architecture, and rainwater drainage—should be tested and implemented to prevent deaths from climate-sensitive diseases in vulnerable communities in Burkina Faso and the wider Sahel region. 
  •  
10.
  • Baena-Morales, Salvador, et al. (författare)
  • Towards a more sustainable future: simple and effective recommendations to integrate planetary health into education
  • 2023
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 7:10, s. e868-e873
  • Forskningsöversikt (refereegranskat)abstract
    • This Personal View presents recommendations aimed at integrating planetary health into various stages of education, which are simple but effective, and designed with teachers in training and those who have not yet considered how to incorporate UNESCO’s Education for Sustainable Development into their teaching practice. However, the constantly evolving nature of the Education for Sustainable Development programme must be recognised, and the importance of being able to adapt teaching methods to meet the changing needs of students as they progress through their educational journey should be highlighted. Therefore, this Personal View considers the cognitive, social, and ethical evolution of students and offers specific recommendations for preschool, primary, secondary, and university education levels. We recommend that educators should focus on teaching students to critically evaluate data on sustainability and to develop innovative solutions to environmental challenges. We also highlight the importance of incorporating practical projects, using active methods that promote skills related to caring for the planet, or the importance of situated learning that attends to the particularities of each context. In this way, students can develop skills and values that contribute to a more sustainable future. The recommendations made here aim to provide educators and researchers with simple but effective ways to integrate planetary health into education.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40
Typ av publikation
tidskriftsartikel (34)
forskningsöversikt (6)
Typ av innehåll
refereegranskat (40)
Författare/redaktör
Huber, Veronika (7)
Gasparrini, Antonio (6)
Sera, Francesco (6)
Guo, Yuming (6)
Lavigne, Eric (6)
Tong, Shilu (6)
visa fler...
Forsberg, Bertil, pr ... (5)
Pascal, Mathilde (5)
Schwartz, Joel (5)
Armstrong, Ben (5)
Bell, Michelle L (5)
Hashizume, Masahiro (5)
Honda, Yasushi (5)
Íñiguez, Carmen (5)
Kan, Haidong (5)
Kim, Ho (5)
Kyselý, Jan (5)
Ragettli, Martina S (5)
Tobias, Aurelio (5)
Urban, Aleš (5)
Zanobetti, Antonella (5)
Zeka, Ariana (5)
Madureira, Joana (5)
Jaakkola, Jouni J. K ... (5)
Li, Shanshan (5)
Röös, Elin (4)
Martin, Michael (4)
Rocklöv, Joacim, Pro ... (4)
Åström, Christofer, ... (4)
Katsouyanni, Klea (4)
Jonell, Malin (4)
Vicedo-Cabrera, Ana ... (4)
de Sousa Zanotti Sta ... (4)
Dang, Tran Ngoc (4)
Goodman, Patrick (4)
Seposo, Xerxes (4)
Nicholas, Kimberly A ... (4)
Bergman, Kristina (4)
van Zanten, Hannah H ... (4)
Schneider, Alexandra (4)
Nascimento Saldiva, ... (4)
Nunes, Baltazar (4)
Holobaca, Iulian-Hor ... (4)
Hurtado-Díaz, Magali (4)
Lee, Whanhee (4)
Guo, Yue Leon (4)
Ran, Ylva (4)
Potter, Hanna Karlss ... (4)
Nemecek, Thomas (4)
Vanham, Davy (4)
visa färre...
Lärosäte
Umeå universitet (13)
Karolinska Institutet (11)
Lunds universitet (7)
Göteborgs universitet (3)
Kungliga Tekniska Högskolan (3)
Stockholms universitet (3)
visa fler...
Örebro universitet (3)
Linköpings universitet (3)
Chalmers tekniska högskola (3)
Sveriges Lantbruksuniversitet (2)
Uppsala universitet (1)
Karlstads universitet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (24)
Naturvetenskap (8)
Teknik (3)
Lantbruksvetenskap (3)
Samhällsvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy