Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:1402 1544 "

Sökning: L4X0:1402 1544

Sortera/gruppera träfflistan
  • Almqvist, Andreas (författare)
  • On the effects of surface roughness in lubrication
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Tribology is a multidisciplinary field defined as the science and technology of interacting surfaces in relative motion, and embraces the study of friction, wear and lubrication. A typical tribological application is the rolling element bearing. Tribological contacts may also be found in other types of bearings, cam-mechanisms, gearboxes and hydraulic systems. Examples of bearings inside the human body are the operation of the human hip joint and the contact between teeth during chewing. To fully understand the operation of this type of application one has to understand the couplings between the lubricant fluid dynamics, the structural dynamics of the bearing material, the thermodynamical aspects and the resulting chemical reactions. This makes modeling tribological applications an extremely delicate task. Because of the multidisciplinary nature, such theoretical models lead to mathematical descriptions generally in the form of non-linear integro-differential systems of equations. Some of these systems of equations are sufficiently well posed to allow numerical solutions to be carried out, resulting in accurate predictions on performance. In this work, the influence on performance of a surface microscopical nature, the surface roughness, in contact interfaces between different types of machine element components is the subject of study. An example is the non-conformal lubricated contact between one of the rollers and the inner ring in a rolling element bearing. The tribological contact controlling the operation of the human hip joint is also very similar to this. Another example of a non-conformal contact occurs when driving on rainy roads, where the hydrodynamic action of the water separates the tire. To enable investigations of these types of problems, different theoretical models were studied; for the selected model, a numerical solution technique was developed within this project. This model is based on the Reynolds equation coupled with the film thickness equation. The numerical solution technique involves a multilevel technique to facilitate the solution process. Results presented in this thesis, utilizing this approach, study elementary surface features such as ridges and indentations passing each other inside the lubricated conjunction. The Reynolds equation is derived under the assumptions of thin fluid film and creeping flow, and considers in its most general form shear thinning of the lubricant. This type of equation describes the hydrodynamic action of the lubricant flow and may be used when the interfaces consist of either conformal or non-conformal conjunctions. Examples of applications having conformal interfaces are thrust- and journal- bearings or the contact between the eye and a (optical) contact lens. In such types of applications the load carried by the interface is distributed over a fairly large area that under certain circumstances helps to prevent mechanical deformation of the contacting surfaces. Such applications are said to operate in the hydrodynamic lubrication (HL) regime. Lubricant compressibility and cavitation are important aspects and have received some attention. However, the main objective when modeling HL has been to investigate and develop methods that enable the influence of surface roughness to be to be studied efficiently. Homogenization is a rigorous mathematical concept that when applied to a certain problem may be regarded as an averaging technique as well as it provides information about the induced effects of local surface roughness. Homogenization inflicts no restrictions on the surface roughness representation other than the representative part of the chosen surface roughness being assumed periodically distributed and of course the assumptions of thin film flow made through the Reynolds equation. The homogenization process leads to a two sets of equations one for the local scale describing surface roughness, scale and one for the global scale describing application geometry. The unequivocally determined coefficients of the global problem, which may be regarded as flow factors, are obtained through the solution of local problems. This makes homogenization an eminent approach to be used investigating the influence of surface roughness on hydrodynamic performance. In the present work, homogenization has been used to derive computationally feasible forms of problems originating from incompressible and compressible Reynolds type equations that describe stationary and unstationary flows in both cartezian and cylindrical co-ordinates. This technique enables simulations of surface roughness induced effects when considering surface roughness descriptions originating from measurements. Moreover, the application of homogenization facilitates the interpretation of results. Numerical investigations following the homogenization process have been carried out to verify the applicability of homogenization in hydrodynamic lubrication. Homogenization has also been shown here to enable efficient analysis of rough hydrodynamically lubricated problems. Also of note, in connection to the scientific contribution within tribology, collaboration with a group in applied mathematics has lead to the development of novel techniques in that area. These ideas have also been successfully applied, with some results presented in this thesis. At start-ups, the contact in a rolling element bearing could be both starved and drained from lubricant. In this case the hydrodynamic action becomes negligible in terms of load carrying capacity. The load is carried exclusively by surface asperities, the tribo film, or both. This is hereby modeled as the unlubricated frictionless contact between rough surfaces, i.e. a contact mechanical approach. A variational principle was used in which the real area of contact and the contact pressure distribution minimize the total complementary potential energy. The material model is linear elastic-perfectly plastic and the energy dissipation due to plastic deformation is accounted for. The numerics of this contact mechanical approach involve the fast Fourier transformation (FFT) technique in order to facilitate the solution process. Investigation results of the contact mechanics of realistic surfaces are presented in this thesis. In this investigation the variation in the real area of contact, the plasticity index and some surface roughness parameters due to applied load were studied.
  • Almqvist, Torbjörn (författare)
  • Computational fluid dynamics in theoretical simulations of elastohydrodynamic lubrication
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • The work presented in this thesis concerns computer simulations of lubrication processes, and the main part deals with simulations in the elastohydrodynamic lubrication (EHL) regime. The thesis summarises the work performed in the five papers referred to as Paper A, B, C, D and E. The aim is to give the reader a more explanatory description of the investigations performed in the papers and of the physical processes present in EHL. Lubrication is a sub-area of tribology, which is the science of interacting bodies in relative motion, two other sub-areas being wear and friction. Lubrication is commonly referred to as a way of reducing friction and protecting the surfaces from wear. Typical devices where EHL is present are machine components. Examples of these are bearings, cams and gears. The lubricant can in such an application have many different tasks. The ultimate goal is that the surfaces in motion should be separated by a fluid film, thus reducing the friction and wear. That leads to low frictional losses and long operating life for the machine components. This goal is, however, not always fulfilled, and to protect the surfaces from wear when the lubricating film collapses, there are additives added to the lubricant. Commonly, lubricants contain of a number of additives, but these are not in focus in this thesis. Common to many EHL-applications, especially machine components, are thin lubricating films and high fluid pressures. The high pressures result in elastic deformation of the contacting bodies. The lubricating films in such applications are very thin, often in the range 0.1-1 10^-6m with pressures ranging from 0.5-3 GPa. The contact diameter is approximately 1 mm and the time a fluid element needs to pass through the contact is approximately 0.1 ms. The altering geometrical scales and rapid changes in the physical variables, such as pressure, viscosity and temperature etc., make numerical simulations to a challenging task. The variables of primary interest in the numerical simulations are: film thickness, pressure, temperature and friction. The film thickness is an important variable that gives information as to whether the surfaces are separated by the lubricating film. It is the lifting force generated by the hydrodynamic pressure that governs the separation of the surfaces in motion. However, even if a lubricating film is present, EHL machine components deteriorate when they have been in service for a long time. It is then that the cycling in pressure and temperature leads to fatigue of the surfaces, so that the level of these variables is also of importance. The friction that has developed in the EHL-contacts leads to a loss of energy, which increases the temperature in the conjunctions. Friction is therefore important not only for the efficiency, but also when thermal aspects have to be considered. The physical processes present in EHL are inter-disciplinary, closely related to other fields of science such as fluid mechanics, solid mechanics, and rheology. In almost all numerical simulations of lubrication performed today, the hydrodynamics are modelled by an equation referred to as the Reynolds equation. This equation is derived from a simplified form of the momentum equations, which are combined with the continuity equation; and the result is a Poisson equation for the fluid pressure. The assumptions made when deriving this equation limit the size of the computational or spatial domain, and the equation cannot predict pressure variations across the lubricating fluid film. In the work presented in this thesis, an extended approach, where the technique is based on CFD (computational fluid dynamics), is used to simulate the lubricant flow. The extended approach is here based on more complete forms of the equations of momentum, continuity and energy and the above degeneracy will be removed. That implies, if such an approach works, that it should now be possible to simulate the lubricant flow under conditions where the Reynolds equation is not valid. So far, only few attempts have been made to use the CFD-technique. From the preceding discussion of rapid changes in accordance with elastic deformation of the contacting surfaces, a great deal of work has been carried out to modify the numerical algorithm in the CFD-software to fit EHL-problems. The CFD- software used throughout the work in this thesis is CFX4 (2003).
  • Alvarez, Manuel, 1980- (författare)
  • Distribution Network Planning Considering Capacity Mechanisms and Flexibility
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • The increasing penetration of distributed energy resources (DERs) has posed challenges to the distribution system operator (DSO) from the operation and regulatory point of view. High penetration of DERs could have negative impacts on the performance of the distribution grid, and depending on the regulatory framework, the DSO's remuneration as well. In liberalized electrical systems, the focus on promoting eciency has led to the implementation of an incentive-based regulation that exerts additional pressure on the DSOs to reduce costs. Additionally, the European Parliament Directive 2009/72/EC establishes a regulatory unbundling among the distribution, production, and retailing activities within the same vertically integrated electric utility.A way of helping the DSO to cope with the posed challenges is by providing it with exibility. This exibility can be acquired from the planning stage, and later be used during the system operation. This exibility can stem from the DSO's ability to exert control on the demand and the supply side to balance the system and correct its operational state.Based on the European DSOs' current situation at facing the increasing penetration of DERs, this thesis investigates in non-wired exible grid tools to solve the distribution network expansion problem. The investigation focuses on exibility providers, in particular on energy storage systems and hydropower, and also on capacity mechanisms to translate the capacity from DERs into the grid's capacity for planning purposes.Given that the share of renewable sources among the DERs is increasing, and considering the importance of energy storage systems in providing exibility to balance renewable energy production, the eort has been turned on to developing a hydropower model and a generic storage model that t both planning and operational studies.Given the need for gearing the DERs' behavior into the DSO's decision making process during the planning and operational timescales, the design and implementation of a distribution capacity mechanism have been developed. The design of the capacity mechanism has been conceived considering its integration within the distribution network expansion problem.The outcomes of this thesis can be synthesized as follows: 1) A generic hydraulic/storage model provided with an equivalent marginal cost that aids in considering the impact of present decisions in the future costs. 2) A market oriented distribution capacity mechanism that gears DERs and the DSOs to benefit mutually. 3) A distribution network expansion planning formulation that integrates the capacity resource from DERs through the distribution capacity mechanism.
  • Alzghoul, Ahmad (författare)
  • Mining data streams to increase ‎industrial product availability
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Improving product quality is always of industrial interest. Product availability, a function of product maintainability and reliability, is an example of a measurement that can be used to evaluate product quality. Product availability and cost are two units which are especially important to manage in the context of the manufacturing industry, especially where industry is interested in selling or buying offers with increased service content. Industry in general uses different strategies for increasing equipment availability; these include: corrective (immediate or delayed) and preventive strategies. Preventive strategies may be further subdivided into scheduled and predictive (condition-based) maintenance strategies. In turn, predictive maintenance may also be subdivided into scheduled inspection and continuously monitored. The predictive approach can be achieved by early fault detection. Fault detection and diagnosis methods can be classified into three categories: data-driven, analytically based, and knowledge-based methods. In this thesis, the focus is mainly on fault detection and on data-driven models.Furthermore, industry is generating an ever-increasing amount of data, which may eventually become impractical to store and search, and when the data rate is increasing, eventually impossible to store. The ever-increasing amount of data has prompted both industry and researchers to find systems and tools which can control the data on the fly, as close to real-time as possible, without the need to store the data itself. Approaches and tools such as Data Stream Mining (DSM) and Data Stream Management Systems (DSMS) become important. For the work reported in this thesis, DSMS and DSM have been used to control, manage and search data streams, with the purpose of supporting increased availability of industrial products.Bosch Rexroth Mellansel AB (formerly Hägglunds Drives AB) has been the industrial partner company during the course of the work reported in this thesis. Related data collection concerning the functionality of the BRMAB hydraulic system has been performed in collaboration with other researchers in Computer Aided Design at Luleå University of Technology.The research reported in this thesis started with a review of data stream mining algorithms and their applications in monitoring. Based on the review, a data stream classification method, i.e. Grid-based classifier, was proposed, tested and validated (Paper A). Also, a fault detection system based on DSM and DSMS was proposed and tested, as reported in Paper A. Thereafter, a data stream predictor was integrated into the proposed fault detection system to detect failures earlier, thus demonstrating how data stream prediction can be used to gain more time for proactive response actions by industry (Paper B). Further development included an automatic update method which allows the proposed fault detection system to be able to overcome the problem of concept drift (Paper E). The proposed and modified fault detection systems were tested and verified using data collected in collaboration with Bosch Rexroth Mellansel AB (BRMAB). The requirements for the proposed fault detection system and how it can be used in product development and design of the support system were also discussed (Paper C). In addition, the performance of a knowledge-based method and a data- driven method for detecting failures in high-volume data streams from industrial equipment have been compared (Paper D). It was found that both methods were able to detect all faults without any false alert. Finally, the possible implications of using cloud services for supporting industrial availability are discussed in Paper F. Further discussions regarding the research process and the relations between the appended papers can be found in Chapter 2, Figure 4 and in Chapter 5, Figure 21.The results showed that the proposed and modified fault detection systems achieved good performance in detecting and predicting failures on time (see Paper A and Paper B). In Paper C, it is shown how data stream management systems may be used to increase product availability awareness. Also, both the data-driven method and the knowledgebased method were suitable for searching data streams (see Paper D). Paper E shows how the challenge of concept drift, i.e. the situation in which the statistical properties of a data stream change over time, was turned to an advantage, since the authors were able to develop a method to automatically update the safe operation limits of the one-class data-driven models.In general, detecting faults and failures on time prevents unplanned stops and may improve both maintainability and reliability of industrial systems and, thus, their availability (since availability is a function of maintainability and reliability). By the results, this thesis demonstrates how DSM and DSMS technologies can be used to increase product availability and thereby increase product quality in terms of availability.
  • Amara, Sofiane (författare)
  • Novel and ancient technologies for heating and cooling buildings
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • The basic issue of this thesis concerns one of the fundamental problems of the future of our society: How to meet the energy requirements for a large and growing world population while preserving our environment? This question is important for the world and the answers are complex and interwoven.Conventional energy sources, fossil and fissile, are polluting in the present and in the future: they erode the environment and their resources are limited. Renewable energy (hydro, wind, solar, geothermal) constitutes a minimum of pollution in the different energy systems. The technologies for using renewable energy are well known though further development and progress are made. This development also requires behavioural change, adaptation, and above all political will. The transition from an economy based on fossil energy to an economy based on renewable energy appears necessary for the protection of the environment. The cost of renewable energy is often represented as an obstacle but remains competitive in the long run.The development and availability of renewable energy, which varies because of its spatial and temporal distribution, require an adaptation of lifestyle, habits, habitat design (passive bioclimatic houses), urban planning and transportation.The focus of this thesis was to apply renewable energy in an area with hot summers and cold winter, a climate like that in the northwest of Algeria. In order to provide improved comfort in the buildings and also economic development in this area, the energy demand for heating and cooling was analyzed in the ancient city of Tlemcen. To supply domestic hot water and space heating, water must be simultaneously available at two different temperature levels. Cold water temperature, close to that of the atmosphere, and hot water between 50 and 60°C. An interesting feature of the preparation of hot water is the small variation of requirements during the year, unlike that to heating. The preparation of hot water is one of the preferred applications of solar energy in the building for several reasons. For this reason an experimental study of the thermal behaviour of a domestic hot water storage tank was undertaken. The phenomena that affect the thermal behaviour of tank especially the coupling between the solar collector and storage tank was studied. This study included concentrating solar collector in which optical fibers were used to transport the energy to the storage tank. Another technology was introduced and developed for the heating and cooling of buildings in the desert involving an existing ancient irrigation system called Fouggara. The novel idea is to use the Fouggara as an air conditioner by pumping ambient air through this underground system. Then air at a temperature of about 21°C would be supplied to the building for heating in the winter and cooling in the summer. This study shows the feasibility of using this ancient irrigation system of Fouggara and contributes to reducing and eliminating the energy demand for heating and cooling buildings in the Sahara desert.
  • Amer, Eynas (författare)
  • Pulsed laser ablation studied using digital holography
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Pulsed digital holographic interferometry has been used to study the plume and the shock wave generated in the laser ablation process on different targets under atmospheric air pressure. A pulsed Nd-YAG laser system (pulse duration 12 ns) has been used both for ablating the material (wavelength 1064 nm) and for measurement (wavelength 532 nm). Digital holograms were recorded for different time delays using collimated laser light passed through the volume along the target. Numerical data of the integrated refractive index field were calculated and presented as phase maps. The Radon inversion has been used to estimate the 3D refractive index fields measured from the projections assuming rotational symmetry. Intensity maps have been calculated from the recorded digital holograms and used to calculate the attenuation of the probing laser beam by the ablated plume. Qualitative and quantitative information have been extracted from both the phase map and the intensity map to help describing the laser ablation process. Also 3D information about the induced plume has been obtained by numerical reconstruction of the digital holograms at different planes along the plume. The amount of released energy due to laser impact on a PCBM target has been estimated using the point explosion model. The released energy is normalized by the incident laser pulse energy and the energy conversion efficiency between the laser pulse and the target has been calculated and it seems to be constant around 80 %. The 3D refractive index fields have been used to calculate the shock wave front density and the electron number density distribution within the induced plasma. The electron number densities are found to be in the order of 1018 cm-3 and decay at a rate of 3x1015 electrons/cm3ns. The effect of the laser spot diameter on the shock wave generated in the ablation process of a Zn target has been studied. The induced shock wave has an ellipsoidal shape that approaches a sphere for decreasing spot diameter. A model was developed that approaches the density distribution that facilitates the derivation of the particle velocity field. The method provides quantitative results that are discussed; in particular a comparison with the point explosion theory. The effect of the physical properties of the target on the laser ablation process has been studied. The comparison of the laser ablation of Zn and Ti shows that different laser ablation mechanisms are observed for the same laser settings and surrounding gas. At a laser fluence of 5 J/cm2, phase explosion appears to be the ablation mechanism in case of Zn, while for Ti normal vaporisation seems to be the dominant mechanism. The results show that pulsed digital holographic interferometry is a promising technique to give a physical picture and increase the understanding of the laser ablation process in a time resolved manner.
  • Amiri, Kaveh (författare)
  • Experimental investigation of a Kaplan runner under steady-state and transient operations
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Hydropower is a key part in electricity production nowadays. Hydropower electricity production rose to 3579.5 TWh in 2013, ranked as the second source of electricity production in the world after fossil fuels. It is the principle source of renewable electricity production, producing 16.2% of the electricity in 2013, accounting for 78% of the renewable electricity production in the world. Specifically in Sweden, hydropower is the main source of electricity production producing 47.5% of the required electricity. Nuclear, biomass, and wind placed in the following positions in the ranking in 2013 with 38.4%, 6.5%, and 4.3%, respectively.Besides meeting electricity demand with an environmental-friendly method, hydropower has a unique and important role which is grid regulation: balancing electricity production and consumption. Gas turbines and hydraulic turbines called “Primary reserves” are the only electricity production systems that can be used for fast regulations due to their short start-up time from 1 to 60 s. The obvious environmental problems, air pollution, and costs associated with gas turbines make hydropower a prime alternative whenever applicable. In Sweden, the share of fossil fuels in electricity production is small; 2.8% in 2012 with an average annual growth of -0.7% in the period 2002-2012. Hence, hydropower is practically the only available source used to regulate the grid fluctuations resulting from deregulated market and fast growth of intermittent power generation systems, i.e., solar and wind energy. Hydraulic turbines are subject to frequent off-design and transient operations because of their grid regulation responsibility. Such operating conditions decrease turbine’s efficiency and affect its lifetime significantly. Off-design and transient operation of hydraulic turbines may induce unpredicted pressure fluctuations on the stationary and rotating parts of the turbine. Special attention should be dedicated to the effects of such phenomena on the runner blades because of their importance on the efficiency of the turbine, and their vulnerability to the pressure fluctuations.This thesis presents an experimental investigation on the effects of off-design and transient operation of an axial hydraulic turbine on velocity fields and pressure fluctuations exerted on the runner and the draft tube of a turbine. The investigation was performed on a 1:3.1 scaled model of a Kaplan turbine known as Porjus U9. The main objective was to investigate the effect of operating point on pressure and velocity fluctuations in the runner and the draft tube. Another objective was to study the effect of transient operation on pressure fluctuations exerted on the runner and the draft tube, to investigate the formation and mitigation process of a rotating vortex rope (RVR) within the draft tube. Finally, the effect of the swirl leaving the runner and the draft tube bend on the performance of the turbine was investigated. The study involves pressure measurements on the runner blades and draft tube walls of the turbine, laser Doppler anemometry (LDA) measurements within and after the runner, and particle image velocimetry (PIV) measurements within the draft tube.The pressure and LDA results acquired during steady state operation of the turbine showed different sources of fluctuations on the runner at different operating points resulting in symmetric and asymmetric fluctuating forces on the runner. The pressure measurements during transient operating conditions exhibited pressure fluctuations exerted on the runner during load variations and elucidated some aspects of formation and mitigation process of RVR within the draft tube. The PIV measurements performed after the draft tube bend of the turbine focuses on the physical phenomena resulting in flow asymmetry after the draft tube bend of hydraulic turbines affecting their efficiency.
  • Amofah, Lea Rastas (författare)
  • Towards sustainability of environmental protection : recovery of nutrients from wastewater filtration and the washing of arsenic contaminated soils
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Conventional methods for wastewater treatment and remediation of the sites withcontaminated soils focus on protection of human health, receiving waters and theenvironment. Towards this end, these methods concentrate on the reduction or removal of polluting substances, and therefore, are not well suited for creating resources through the recovery of nutrients, energy and decontaminated soils. Hence, a new, more sustainable approach is promoted in this thesis and, besides meeting the protection requirements, takes into consideration the resources that can be recovered from the treatment processes, keeping in mind the energy use during such a recovery. To achieve this goal, a better knowledge of wastewater and contaminated soil treatment approaches needs to be developed, from a resource recovery perspective.In this thesis project, laboratory, pilot-scale and full-scale investigations were conducted to study phosphorus (P) sorption in blast furnace slag (BF slag) filters. Further, ammonium adsorption by, and desorption from, clinoptilolite was studied in laboratory columns. A full-scale wastewater treatment system, comprising a willow bed followed by two parallel P–filters with BF slag and Filtralite® P media was examined for the wastewater treatment efficiency, nutrient accumulation in willow biomass, and biomass production. In a similar way, laboratory, pilot-scale and full-scale investigations were conducted to examine arsenic (As) removal from As contaminated soils using physical separation and chemical extraction. Finally, the decontamination of the extraction effluents (contaminated by As) was studied by adjusting pH and adding a coagulant, iron chloride.Pollutant mobilisation and immobilisation were affected by pH, the organic mattercontent, redox potential, time (process duration) and temperature. Results showed that pollutants in the studied media have complex characteristics in terms of charge of species and redox speciation, and therefore, no general conclusions addressing all the conditions studied could be given. The P sorption capacity of BF slag was reduced by outdoor storage and weathering, and the content of organic substances in sewage seemed to have a more negative impact on the sorption process when using weathered BF slag. Arsenic mobilisation from As contaminated soils was affected by pH, the content of organic substances, and redox potential and the nature of these effects depended on the polluting chemicals (i.e. wood preservatives) and the content of calcium in the soil. Extractions at elevated temperatures facilitated high As mobilisation from the contaminated soils for short contact times, assuming that the extraction solution features vital for As mobilisation were not altered, and the fastest As mobilisation was achieved by using an acid oxalate citrate solution rather than reductive or alkaline extraction solutions at room temperatures.In the full-scale treatment system, the willow bed efficiently reduced the content of total suspended solids and biodegradable organic matter in the influent wastewater and prevented the clogging of downstream phosphorus filters during the one year of operation. The Filtralite® P treatment train simultaneously removed over 90 and 70% of BOD and P, respectively, during the experimental period, and therefore, fulfilled the requirements for the low protection level over the period of one year, except for tot-P excesses during the snowmelt period. In the case of tot-N reduction (50%), the high protection level was achieved. On the other hand, the treatment system with BF slag did not fulfil requirements for either low or high protection level, because the coarse-grained BF slag was inefficient in retaining P and the concentrations of oxygen consuming compounds were elevated downstream of the filter.The studied methods for recovering resources through treatment of wastewater and contaminated soils demonstrated a potential for improving environmental sustainability of these processes. Even though the willow bed did not accumulate nutrients from the fed wastewater to a high degree, it facilitated nutrient recovery in other treatment steps located downstream. Fresh, fine-grained BF slag showed capacity to recover P from wastewater, which was comparable to that of other efficient P sorbents. The BF slag material released high amounts of sulphuric compounds during the initial loading phase which consequently increased the concentration of oxygen consuming compounds in the filter effluent. Thus, the use of BF slag for P retention is not recommended when the effluent is discharged to sensitive receiving waters. Natural clinoptilolite studied showed a high capacity for adsorbing ammonium from the pre-treated wastewater, at low operating temperatures. Hence, the clinoptilolite filter has a potential to enhance N retention during the plant dormancy or prior to the maturity of willow beds when N retention is needed. However, the recovery of ammonium was limited by the inefficient desorption process using tap water without recycling the eluate. Fertigated willows grew nearly as well as in the south of Sweden, but in the highly loaded horizontal flow willow bed, the potential to produce biofuel was limited. To recover nutrients, willow clones with lateral growth are preferable. 90% of nutrients accumulated in the above-ground parts of willows could be recovered from the experimental site operated over three growing seasons, particularly when using dense planting and annual harvesting prior to leaf fall.Soil treatment, comprising the exclusion of the fine soil fraction prior to the chemical extraction with strong extraction agents applied at an elevated temperature, was efficient in decontaminating soils, even for short contact times. However, this treatment procedure results in an incomplete soil recovery (i.e. the recovered mass of soil after decontamination is appreciably smaller than the soil mass prior to decontamination), consumes a high amount of energy and lowers the soil quality, which limits the potential end-use of the decontaminated soil. The alkaline extraction effluents could be decontaminated at a pH of 4-5 with the addition of a coagulant. Also, the treatment of alkaline extraction effluents was facilitated by the exclusion of the fine soil fraction from the chemical extraction step. The use of acid oxalate-citrate extraction solution was judged infeasible because the decontamination of such extraction solution is complicated due to the high pH buffering and complexing capacity of the solution.
Skapa referenser, mejla, bekava och länka
Typ av publikation
doktorsavhandling (1377)
konstnärligt arbete (1)
forskningsöversikt (1)
licentiatavhandling (1)
Typ av innehåll
övrigt vetenskapligt (1378)
refereegranskat (1)
Persson, Lars-Erik, ... (5)
Persson, Lars-Erik (4)
Kumar, Uday (4)
Wall, Peter (4)
Delsing, Jerker, 195 ... (4)
Lindgren, Lars-Erik (3)
visa fler...
Abrahamsson, Lena (3)
Pederson, Robert (3)
Ahmadi, Alireza (3)
Ståhlbröst, Anna, 19 ... (3)
Engström, Åsa (3)
Wall, Peter, Profess ... (3)
Tretten, Phillip (3)
Lundberg, Jan, Profe ... (3)
Varna, Janis (3)
Laue, Jan (2)
Pesämaa, Ossi (2)
Al-Ansari, Nadhir, 1 ... (2)
Andersson, Ulf (2)
Gao, Chuansi (2)
Bollen, Math (2)
Fältholm, Ylva (2)
Johansson, Jan, 1949 ... (2)
Johansson, Kristina (2)
Berglund, Leif (2)
Slapak, Rikard (2)
Nilsson, Hans (2)
Larsson, Anders (2)
Johansson, Andreas (2)
Nikolakopoulos, Geor ... (2)
Jacobsson, Lars (2)
Engström, Fredrik (2)
Nilsson, Martin (2)
Mouzon, Johanne (2)
Bergström, David (2)
Jagers, Sverker (2)
Hansson, Johan (2)
Lindgren, Per (2)
Ghodrati, Behzad (2)
Lundström, Staffan (2)
Marklund, Pär (2)
Olsson, Nils (2)
Karlberg, Magnus (2)
Delsing, Jerker (2)
Hedlund, Hans (2)
Knutsson, Sven, Prof ... (2)
Karim, Ramin, 1964- (2)
Blecken, Godecke-Tob ... (2)
Viklander, Maria (2)
Alakangas, Lena (2)
visa färre...
Luleå tekniska universitet (1366)
Mittuniversitetet (11)
Högskolan i Halmstad (9)
Malmö universitet (7)
Högskolan i Gävle (6)
Högskolan Dalarna (6)
visa fler...
Linnéuniversitetet (4)
Blekinge Tekniska Högskola (4)
Högskolan Kristianstad (3)
Umeå universitet (3)
Stockholms universitet (2)
Högskolan Väst (2)
Jönköping University (2)
Kungliga Tekniska Högskolan (1)
Lunds universitet (1)
Uppsala universitet (1)
Mälardalens högskola (1)
Örebro universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Högskolan i Borås (1)
RISE (1)
Ersta Sköndal Bräcke högskola (1)
visa färre...
Engelska (1273)
Svenska (102)
Norska (4)
Forskningsämne (UKÄ/SCB)
Teknik (947)
Samhällsvetenskap (201)
Naturvetenskap (184)
Medicin och hälsovetenskap (54)
Humaniora (14)
Lantbruksvetenskap (2)


pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy