SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1553 7404 "

Sökning: L773:1553 7404

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Frånberg, Mattias, 1985-, et al. (författare)
  • Discovering Genetic Interactions in Large-Scale Association Studies by Stage-wise Likelihood Ratio Tests
  • 2015
  • Ingår i: PLoS Genetics. - 1553-7390 .- 1553-7404. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the success of genome-wide association studies in medical genetics, the underlying genetics of many complex diseases remains enigmatic. One plausible reason for this could be the failure to account for the presence of genetic interactions in current analyses. Exhaustive investigations of interactions are typically infeasible because the vast number of possible interactions impose hard statistical and computational challenges. There is, therefore, a need for computationally efficient methods that build on models appropriately capturing interaction. We introduce a new methodology where we augment the interaction hypothesis with a set of simpler hypotheses that are tested, in order of their complexity, against a saturated alternative hypothesis representing interaction. This sequential testing provides an efficient way to reduce the number of non-interacting variant pairs before the final interaction test. We devise two different methods, one that relies on a priori estimated numbers of marginally associated variants to correct for multiple tests, and a second that does this adaptively. We show that our methodology in general has an improved statistical power in comparison to seven other methods, and, using the idea of closed testing, that it controls the family-wise error rate. We apply our methodology to genetic data from the PRO-CARDIS coronary artery disease case/control cohort and discover three distinct interactions. While analyses on simulated data suggest that the statistical power may suffice for an exhaustive search of all variant pairs in ideal cases, we explore strategies for a priori selecting subsets of variant pairs to test. Our new methodology facilitates identification of new disease-relevant interactions from existing and future genome-wide association data, which may involve genes with previously unknown association to the disease. Moreover, it enables construction of interaction networks that provide a systems biology view of complex diseases, serving as a basis for more comprehensive understanding of disease pathophysiology and its clinical consequences.
  •  
62.
  • Fusté, Javier Miralles, et al. (författare)
  • In Vivo Occupancy of Mitochondrial Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA Replication
  • 2014
  • Ingår i: Plos Genetics. - 1553-7390 .- 1553-7404. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial DNA (mtDNA) encodes for proteins required for oxidative phosphorylation, and mutations affecting the genome have been linked to a number of diseases as well as the natural ageing process in mammals. Human mtDNA is replicated by a molecular machinery that is distinct from the nuclear replisome, but there is still no consensus on the exact mode of mtDNA replication. We here demonstrate that the mitochondrial single-stranded DNA binding protein (mtSSB) directs origin specific initiation of mtDNA replication. MtSSB covers the parental heavy strand, which is displaced during mtDNA replication. MtSSB blocks primer synthesis on the displaced strand and restricts initiation of light-strand mtDNA synthesis to the specific origin of light-strand DNA synthesis (OriL). The in vivo occupancy profile of mtSSB displays a distinct pattern, with the highest levels of mtSSB close to the mitochondrial control region and with a gradual decline towards OriL. The pattern correlates with the replication products expected for the strand displacement mode of mtDNA synthesis, lending strong in vivo support for this debated model for mitochondrial DNA replication.
  •  
63.
  • Gáliková, Martina, et al. (författare)
  • The thirsty fly : Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila
  • 2018
  • Ingår i: PLOS Genetics. - 1553-7390 .- 1553-7404. ; 14:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Animals need to continuously adjust their water metabolism to the internal and external conditions. Homeostasis of body fluids thus requires tight regulation of water intake and excretion, and a balance between ingestion of water and solid food. Here, we investigated how these processes are coordinated in Drosophila melanogaster. We identified the first thirst-promoting and anti-diuretic hormone of Drosophila, encoded by the gene Ion transport peptide (ITP). This endocrine regulator belongs to the CHH (crustacean hyperglycemic hormone) family of peptide hormones. Using genetic gain- and loss-of-function experiments, we show that ITP signaling acts analogous to the human vasopressin and renin-angiotensin systems; expression of ITP is elevated by dehydration of the fly, and the peptide increases thirst while repressing excretion, promoting thus conservation of water resources. ITP responds to both osmotic and desiccation stress, and dysregulation of ITP signaling compromises the fly’s ability to cope with these stressors. In addition to the regulation of thirst and excretion, ITP also suppresses food intake. Altogether, our work identifies ITP as an important endocrine regulator of thirst and excretion, which integrates water homeostasis with feeding of Drosophila.
  •  
64.
  • Ganna, Andrea, et al. (författare)
  • Large-scale Metabolomic Profiling Identifies Novel Biomarkers for Incident Coronary Heart Disease
  • 2014
  • Ingår i: PLOS Genetics. - 1553-7390 .- 1553-7404. ; 10:12, s. e1004801-
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyses of circulating metabolites in large prospective epidemiological studies could lead to improved prediction and better biological understanding of coronary heart disease (CHD). We performed a mass spectrometry-based non-targeted metabolomics study for association with incident CHD events in 1,028 individuals (131 events; 10 y. median follow-up) with validation in 1,670 individuals (282 events; 3.9 y. median follow-up). Four metabolites were replicated and independent of main cardiovascular risk factors [lysophosphatidylcholine 18∶1 (hazard ratio [HR] per standard deviation [SD] increment = 0.77, P-value<0.001), lysophosphatidylcholine 18∶2 (HR = 0.81, P-value<0.001), monoglyceride 18∶2 (MG 18∶2; HR = 1.18, P-value = 0.011) and sphingomyelin 28∶1 (HR = 0.85, P-value = 0.015)]. Together they contributed to moderate improvements in discrimination and re-classification in addition to traditional risk factors (C-statistic: 0.76 vs. 0.75; NRI: 9.2%). MG 18∶2 was associated with CHD independently of triglycerides. Lysophosphatidylcholines were negatively associated with body mass index, C-reactive protein and with less evidence of subclinical cardiovascular disease in additional 970 participants; a reverse pattern was observed for MG 18∶2. MG 18∶2 showed an enrichment (P-value = 0.002) of significant associations with CHD-associated SNPs (P-value = 1.2×10-7 for association with rs964184 in the ZNF259/APOA5 region) and a weak, but positive causal effect (odds ratio = 1.05 per SD increment in MG 18∶2, P-value = 0.05) on CHD, as suggested by Mendelian randomization analysis. In conclusion, we identified four lipid-related metabolites with evidence for clinical utility, as well as a causal role in CHD development.
  •  
65.
  • Garre, Elena, 1978, et al. (författare)
  • The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock.
  • 2018
  • Ingår i: PLoS Genetics. - 1553-7390 .- 1553-7404. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered.
  •  
66.
  • Giraud, Antoine, et al. (författare)
  • Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut
  • 2008
  • Ingår i: PLOS Genetics. - 1553-7390 .- 1553-7404. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While pleiotropic adaptive mutations are thought to be central for evolution, little is known on the downstream molecular effects allowing adaptation to complex ecologically relevant environments. Here we show that Escherichia coli MG1655 adapts rapidly to the intestine of germ-free mice by single point mutations in EnvZ/OmpR two-component signal transduction system, which controls more than 100 genes. The selective advantage conferred by the mutations that modulate EnvZ/OmpR activities was the result of their independent and additive effects on flagellin expression and permeability. These results obtained in vivo thus suggest that global regulators may have evolved to coordinate activities that need to be fine-tuned simultaneously during adaptation to complex environments and that mutations in such regulators permit adjustment of the boundaries of physiological adaptation when switching between two very distinct environments.
  •  
67.
  • Gomez-Velazquez, Melisa, et al. (författare)
  • CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart
  • 2017
  • Ingår i: PLoS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.
  •  
68.
  • Goretti, Daniela, et al. (författare)
  • Transcriptional and Post-transcriptional Mechanisms Limit Heading Date 1 (Hd1) Function to Adapt Rice to High Latitudes
  • 2017
  • Ingår i: PLoS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rice flowering is controlled by changes in the photoperiod that promote the transition to the reproductive phase as days become shorter. Natural genetic variation for flowering time has been largely documented and has been instrumental to define the genetics of the photoperiodic pathway, as well as providing valuable material for artificial selection of varieties better adapted to local environments. We mined genetic variation in a collection of rice varieties highly adapted to European regions and isolated distinct variants of the long day repressor HEADING DATE 1 (Hd1) that perturb its expression or protein function. Specific variants allowed us to define novel features of the photoperiodic flowering pathway. We demonstrate that a histone fold domain scaffold formed by GRAIN YIELD, PLANT HEIGHT AND HEADING DATE 8 (Ghd8) and several NF-YC subunits can accommodate distinct proteins, including Hd1 and PSEUDO RESPONSE REGULATOR 37 (PRR37), and that the resulting OsNF-Y complex containing Hd1 can bind a specific sequence in the promoter of HEADING DATE 3A (Hd3a). Artificial selection has locally favored an Hd1 variant unable to assemble in such heterotrimeric complex. The causal polymorphism was defined as a single conserved lysine in the CCT domain of the Hd1 protein. Our results indicate how genetic variation can be stratified and explored at multiple levels, and how its description can contribute to the molecular understanding of basic developmental processes.
  •  
69.
  • Graff, Mariaelisa, et al. (författare)
  • Genome-wide physical activity interactions in adiposity : A meta-analysis of 200,452 adults.
  • 2017
  • Ingår i: PLoS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
  •  
70.
  • Graff, M., et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genet. - : Public library service. - 1553-7404 .- 1553-7390. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (412)
Typ av innehåll
refereegranskat (408)
övrigt vetenskapligt (4)
Författare/redaktör
Uitterlinden, Andre ... (26)
McCarthy, Mark I (25)
Hofman, Albert (19)
Wareham, Nicholas J (19)
Andersson, Leif (18)
Van Duijn, Cornelia ... (17)
visa fler...
Wilson, James F. (17)
Groop, Leif (16)
Salomaa, Veikko (16)
Ohlsson, Claes, 1965 (15)
Mohlke, Karen L (15)
Hamsten, A (15)
Rudan, Igor (15)
Loos, Ruth J F (15)
Wichmann, H. Erich (14)
Gyllensten, Ulf (14)
Campbell, Harry (14)
Eriksson, Johan G. (14)
Hallmans, Göran (13)
Chasman, Daniel I. (13)
Pedersen, Nancy L (13)
Lehtimäki, Terho (13)
Mangino, Massimo (13)
Gieger, Christian (13)
Hayward, Caroline (13)
Franks, Paul W (12)
Lindblad-Toh, Kersti ... (12)
Teumer, Alexander (12)
Strachan, David P (12)
Johansson, Åsa (12)
Ridker, Paul M. (12)
Rose, Lynda M (12)
Ingelsson, Erik (12)
Spector, Tim D. (12)
Barroso, Ines (12)
Eriksson, Joel (12)
Perola, Markus (12)
Peters, A (11)
Pedersen, NL (11)
Chanock, Stephen J (11)
Boomsma, Dorret I. (11)
Laakso, Markku (11)
Langenberg, Claudia (11)
Boehnke, Michael (11)
Scott, Robert A (11)
Carlborg, Örjan (11)
Gieger, C (11)
Metspalu, Andres (11)
Shuldiner, Alan R (11)
Polašek, Ozren (11)
visa färre...
Lärosäte
Karolinska Institutet (132)
Uppsala universitet (125)
Göteborgs universitet (55)
Umeå universitet (55)
Lunds universitet (53)
Sveriges Lantbruksuniversitet (45)
visa fler...
Stockholms universitet (23)
Linköpings universitet (22)
Kungliga Tekniska Högskolan (6)
Örebro universitet (6)
Chalmers tekniska högskola (6)
Södertörns högskola (3)
Högskolan Dalarna (3)
Högskolan i Skövde (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (412)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (135)
Medicin och hälsovetenskap (124)
Lantbruksvetenskap (25)
Humaniora (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy