SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0004 6361 OR L773:1432 0746 "

Sökning: L773:0004 6361 OR L773:1432 0746

  • Resultat 41-50 av 3259
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Ambrosch, M., et al. (författare)
  • The Gaia -ESO Survey : Chemical evolution of Mg and Al in the Milky Way with machine learning
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. To take full advantage of upcoming large-scale spectroscopic surveys, it will be necessary to parameterize millions of stellar spectra in an efficient way. Machine learning methods, especially convolutional neural networks (CNNs), will be among the main tools geared at achieving this task. Aims. We aim to prepare the groundwork for machine learning techniques for the next generation of spectroscopic surveys, such as 4MOST and WEAVE. Our goal is to show that CNNs can predict accurate stellar labels from relevant spectral features in a physically meaningful way. The predicted labels can be used to investigate properties of the Milky Way galaxy. Methods. We built a neural network and trained it on GIRAFFE spectra with their associated stellar labels from the sixth internal Gaia-ESO data release. Our network architecture contains several convolutional layers that allow the network to identify absorption features in the input spectra. The internal uncertainty was estimated from multiple network models. We used the t-distributed stochastic neighbor embedding tool to remove bad spectra from our training sample. Results. Our neural network is able to predict the atmospheric parameters Teff and log(g) as well as the chemical abundances [Mg/Fe], [Al/Fe], and [Fe/H] for 36 904 stellar spectra. The training precision is 37 K for Teff, 0.06 dex for log(g), 0.05 dex for [Mg/Fe], 0.08 dex for [Al/Fe], and 0.04 dex for [Fe/H]. Network gradients reveal that the network is inferring the labels in a physically meaningful way from spectral features. We validated our methodology using benchmark stars and recovered the properties of different stellar populations in the Milky Way galaxy. Conclusions. Such a study provides very good insights into the application of machine learning for the analysis of large-scale spectroscopic surveys, such as WEAVE and 4MOST Milky Way disk and bulge low- and high-resolution (4MIDABLE-LR and -HR). The community will have to put substantial efforts into building proactive training sets for machine learning methods to minimize any possible systematics.
  •  
42.
  • Anguiano, B., et al. (författare)
  • Comprehensive comparison between APOGEE and LAMOST Radial velocities and atmospheric stellar parameters
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the era of massive spectroscopy surveys, automated stellar parameter pipelines and their validation are extremely important for an efficient scientific exploitation of the spectra. Aims. We undertake a critical and comprehensive comparison of the radial velocities and the main stellar atmosphere parameters for stars in common between the latest data releases from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE) and the Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) surveys. Methods. APOGEE is a high-resolution (R = 22500) spectroscopic survey with high signal-to-noise ratio that is part of the Sloan Digital Sky Survey (SDSS). The latest data release, SDSS DR14, comprises APOGEE spectra for 263 444 stars, together with main stellar parameters and individual abundances for up to 20 chemical species. LAMOST is a low-resolution (R = 1800) optical spectroscopic survey also in the Northern Hemisphere, where 4000 fibers can be allocated simultaneously. LAMOST DR3 contains 3 177 995 stars. Results. A total of 42 420 dwarfs and giants stars are in common between the APOGEE DR14 - LAMOST DR3 stellar catalogs. A comparison between APOGEE and LAMOST RVs shows a clear offset of 4.54 +/- 0.03 km s(-1), with a dispersion of 5.8 km s(-1), in the sense that APOGEE radial velocities are higher. We observe a small offset in the effective temperatures of about 13 K, with a scatter of 155 K. A small offset in [Fe/H] of about 0.06 dex together with a scatter of 0.13 dex is also observed. We note that the largest offset between the surveys occurs in the surface gravities. Using only surface gravities in calibrated red giants from APOGEE DR14, with which there are 24 074 stars in common, a deviation of 0.14 dex is found with substantial scatter (0.25 dex). There are 17 482 red giant stars in common between APOGEE DR14 and those in LAMOST tied to APOGEE DR12 via the code called the Cannon. There is generally good agreement between the two data-sets. However, we find that the differences in the stellar parameters depend on effective temperature. For metal-rich stars, a different trend for the [Fe/H] discrepancies is found. Surprisingly, we see no correlation between the internal APOGEE DR14 - DR12 differences in T-eff and those in DR14 - LAMOST tied to DR12, where a correlation should be expected since LAMOST has been calibrated to APOGEE DR12. We find no correlation either between the [Fe/H] discrepancies, suggesting that LAMOST/Cannon is not well coupled to the APOGEE DR12 stellar parameter scale. An [Fe/H] dependence between the stellar parameters in APOGEE DR12 and those in DR14 is reported. We find a weak correlation in the differences between APOGEE DR14 - DR12 and LAMOST on DR12 surface gravity for stars hotter than 4800 K and in the log g range between 2.0 and 2.8 dex. We do not observe an [Fe/H] dependency in the gravity discrepancies.
  •  
43.
  • Appelgren, J., et al. (författare)
  • Disc population synthesis : Decrease in the solid mass reservoir through pebble drift
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Surveys of star-forming regions reveal that the dust mass of protoplanetary discs decreases by several orders of magnitude on timescales of a few million years. This decrease in the mass budget of solids is likely due to the radial drift of millimetre (mm) sized solids, called pebbles, induced by gas drag. However, quantifying the evolution of this dust component in young stellar clusters is difficult due to the inherent large spread in stellar masses and formation times. Therefore, we aim to model the collective evolution of a cluster to investigate the effectiveness of radial drift in clearing the discs of mm-sized particles. We use a protoplanetary disc model that provides a numerical solution for the disc formation, as well as the viscous evolution and photoevaporative clearing of the gas component, while also including the drift of particles limited in size by fragmentation. We find that discs are born with dust masses between 50 M· and 1000 M·, for stars with masses, respectively, between 0.1 M· and 1 M·. The majority of this initial dust reservoir is typically lost through drift before photoevaporation opens a gap in the gas disc for models both with and without strong X-ray-driven mass-loss rates. We conclude that the decrease in time of the mass locked in fragmentation-limited pebbles is consistent with the evolution of dust masses and ages inferred from nearby star-forming regions, when assuming viscous evolution rates corresponding to mean gas disc lifetimes between 3 Myr and 8 Myr.
  •  
44.
  • Appelgren, Johan, et al. (författare)
  • Dust clearing by radial drift in evolving protoplanetary discs
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 638
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent surveys have revealed that protoplanetary discs typically have dust masses that appear to be insufficient to account for the high occurrence rate of exoplanet systems. We demonstrate that this observed dust depletion is consistent with the radial drift of pebbles. Using a Monte Carlo method we simulate the evolution of a cluster of protoplanetary discs using a 1D numerical method to viscously evolve each gas disc together with the radial drift of dust particles that have grown to 100 μm in size. For a 2 Myr-old cluster of stars, we find a slightly sublinear scaling between the gas disc mass and the gas accretion rate (Mg Ṁ 0.9). However, for the dust mass we find that evolved dust discs have a much weaker scaling with the gas accretion rate, with the precise scaling depending on the age at which the cluster is sampled and the intrinsic age spread of the discs in the cluster. Ultimately, we find that the dust mass present in protoplanetary discs is on the order of 10-100 M- in 1-3 Myr-old star-forming regions, a factor of 10-100 depleted from the original dust budget. As the dust drains from the outer disc, pebbles pile up in the inner disc and locally increase the dust-to-gas ratio by up to a factor of four above the initial value. In these regions of high dust-to-gas ratio we find conditions that are favourable for planetesimal formation via the streaming instability and subsequent growth by pebble accretion. We also find the following scaling relations with stellar mass within a 1-2 Myr-old cluster: a slightly super-linear scaling between the gas accretion rate and stellar mass (Ṁ M-1.4), a slightly super-linear scaling between the gas disc mass and the stellar mass (Mg M-1.4), and a super-linear relation between the dust disc mass and stellar mass (Md M-1.4-4.1).
  •  
45.
  • Arnadottir, Anna, et al. (författare)
  • The ability of intermediate-band Stromgren photometry to correctly identify dwarf, subgiant, and giant stars and provide stellar metallicities and surface gravities
  • 2010
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Several large scale photometric and spectroscopic surveys are being undertaken to provide a more detailed picture of the Milky Way. Given the necessity of generalisation in the determination of, e.g., stellar parameters when tens and hundred of thousands of stars are considered it remains important to provide independent, detailed studies to verify the methods used in the surveys. Aims. Our first aim is to critically evaluate available calibrations for deriving [M/H] from Stromgren photometry. Secondly, we develop the standard sequences for dwarf stars to reflect their inherent metallicity dependence. Finally, we test how well metallicities derived from ugriz photometry reproduce metallicities derived from the well-tested system of Stromgren photometry. Methods. We evaluate available metallicity calibrations based on Stromgren uvby photometry for dwarf stars using a catalogue of stars with both uvby photometry and spectroscopically determined iron abundances ([Fe/H]). The catalogue was created for this project. Using this catalogue, we also evaluate available calibrations that determine log g. A larger catalogue, in which metallicity is determined directly from uvby photometry, is used to trace metallicity-dependent standard sequences for dwarf stars. We also perform comparisons, for both dwarf and giant stars, of metallicities derived from ugriz photometry with metallicities derived from Stromgren photometry. Results. We provide a homogenised catalogue of 451 dwarf stars with 0.3 < (b - y)(0) < 1.0. All stars in the catalogue have uvby photometry and [Fe/H] determined from spectra with high resolution and high signal-to-noise ratios (S/N). Using this catalogue, we test how well various photometric metallicity calibrations reproduce the spectroscopically determined [Fe/H]. Using the preferred metallicity calibration for dwarf stars, we derive new standard sequences in the c(1,0) versus (b - y)(0) plane and in the c(1,0) versus (v - y)(0) plane for dwarf stars with 0.40 < (b - y)(0) < 0.95 and 1.10 < (v - y)(0) < 2.38. Conclusions. We recommend the calibrations of Ramirez & Melendez (2005) in deriving metallicities from Stromgren photometry and find that intermediate band photometry, such as Stromgren photometry, more accurately than broad band photometry reproduces spectroscopically determined [Fe/H]. Stromgren photometry is also better at differentiating between dwarf and giant stars. We conclude that additional investigations of the differences between metallicities derived from ugriz photometry and intermediate-band photometry, such as Stromgren photometry, are required.
  •  
46.
  • Atalay, B., et al. (författare)
  • MCDHF and RCI calculations of energy levels, lifetimes, and transition rates in Si III and Si IV
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • We present extensive multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction calculations including 106 states in doubly ionized silicon (Si III) and 45 states in triply ionized silicon (Si IV), which are important for astrophysical determination of plasma properties in different objects. These calculations represents an important extension and improvement of earlier calculations especially for Si III. The calculations are in good agreement with available experiments for excitation energies, transition properties, and lifetimes. Important deviations from the NIST-database for a selection of perturbed Rydberg series are discussed in detail.
  •  
47.
  • Babusiaux, C., et al. (författare)
  • Observational Hertzsprung-Russell diagrams
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 16:A10
  • Tidskriftsartikel (refereegranskat)
  •  
48.
  • Bachchan, Rajesh Kumar, et al. (författare)
  • Gaia reference frame amid quasar variability and proper motion patterns in the data
  • 2016
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; , s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gaia’s very accurate astrometric measurements will allow the optical realisation of the International Celestial Reference System to be improved by a few orders of magnitude. Several sets of quasars are used to define a kinematically stable non-rotating reference frame with the barycentre of the solar system as its origin. Gaia will also observe a large number of galaxies. Although they are not point-like, it may be possible to determine accurate positions and proper motions for some of their compact bright features. Aims. The optical stability of the quasars is critical, and we investigate how accurately the reference frame can be recovered. Various proper motion patterns are also present in the data, the best known is caused by the acceleration of the solar system barycentre, presumably, towards the Galactic centre. We review some other less well-known effects that are not part of standard astrometric models.Methods. We modelled quasars and galaxies using realistic sky distributions, magnitudes, and redshifts. Position variability was introduced using a Markov chain model. The reference frame was determined using the algorithm developed for the Gaia mission, which also determines the acceleration of the solar system. We also tested a method for measuring the velocity of the solar system barycentre in a cosmological frame.Results. We simulated the recovery of the reference frame and the acceleration of the solar system and conclude that they are not significantly disturbed by quasar variability, which is statistically averaged. However, the effect of a non-uniform sky distribution of the quasars can result in a correlation between the parameters describing the spin components of the reference frame and the acceleration components, which degrades the solution. Our results suggest that an attempt should be made to astrometrically determine the redshift- dependent apparent drift of galaxies that is due to our velocity relative to the cosmic microwave background, which in principle could allow determining the Hubble parameter.
  •  
49.
  • Baratella, M., et al. (författare)
  • The Gaia-ESO Survey : a new approach to chemically characterising young open clusters I. Stellar parameters, and iron-peak, alpha-, and proton-capture elements
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 634
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Open clusters are recognised as excellent tracers of Galactic thin-disc properties. At variance with intermediate-age and old open clusters, for which a significant number of studies is now available, clusters younger than less than or similar to 150 Myr have been mostly overlooked in terms of their chemical composition until recently (with few exceptions). On the other hand, previous investigations seem to indicate an anomalous behaviour of young clusters, which includes (but is not limited to) slightly sub-solar iron (Fe) abundances and extreme, unexpectedly high barium (Ba) enhancements.Aims: In a series of papers, we plan to expand our understanding of this topic and investigate whether these chemical peculiarities are instead related to abundance analysis techniques.Methods: We present a new determination of the atmospheric parameters for 23 dwarf stars observed by the Gaia-ESO survey in five young open clusters (tau < 150 Myr) and one star-forming region (NGC 2264). We exploit a new method based on titanium (Ti) lines to derive the spectroscopic surface gravity, and most importantly, the microturbulence parameter. A combination of Ti and Fe lines is used to obtain effective temperatures. We also infer the abundances of Fe I, Fe II, Tit, Tin,Na I, Mg I, Al I,Sit, Ca I, Cr I, and Ni I.Results: Our findings are in fair agreement with Gaia-ESO iDR5 results for effective temperatures and surface gravities, but suggest that for very young stars, the microturbulence parameter is over-estimated when Fe lines are employed. This affects the derived chemical composition and causes the metal content of very young clusters to be under-estimated.Conclusions: Our clusters display a metallicity [Fe/H] between +0.04 +/- 0.01 and +0.12 +/- 0.02; they are not more metal poor than the Sun. Although based on a relatively small sample size, our explorative study suggests that we may not need to call for ad hoc explanations to reconcile the chemical composition of young open clusters with Galactic chemical evolution models.
  •  
50.
  • Baratella, M., et al. (författare)
  • The Gaia-ESO Survey: A new approach to chemically characterising young open cluster : II. Abundances of the neutron-capture elements Cu, Sr, Y, Zr, Ba, La, and Ce
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young open clusters (ages of less than 200 Myr) have been observed to exhibit several peculiarities in their chemical compositions. These anomalies include a slightly sub-solar iron content, super-solar abundances of some atomic species (e.g. ionised chromium), and atypical enhancements of [Ba/Fe], with values up to ~0.7 dex. Regarding the behaviour of the other s-process elements like yttrium, zirconium, lanthanum, and cerium, there is general disagreement in the literature: some authors claim that they follow the same trend as barium, while others find solar abundances at all ages. Aims. In this work we expand upon our previous analysis of a sample of five young open clusters (IC 2391, IC 2602, IC 4665, NGC 2516, and NGC 2547) and one star-forming region (NGC 2264), with the aim of determining abundances of different neutron-capture elements, mainly Cu I, Sr I, Sr II, Y II, Zr II, Ba II, La II, and Ce II. For NGC 2264 and NGC 2547 we present the measurements of these elements for the first time. Methods. We analysed high-resolution, high signal-to-noise spectra of 23 solar-type stars observed within the Gaia-ESO survey. After a careful selection, we derived abundances of isolated and clean lines via spectral synthesis computations and in a strictly differential way with respect to the Sun. Results. We find that our clusters have solar [Cu/Fe] within the uncertainties, while we confirm that [Ba/Fe] is super-solar, with values ranging from +0.22 to +0.64 dex. Our analysis also points to a mild enhancement of Y, with [Y/Fe] ratios covering values between 0 and +0.3 dex. For the other s-process elements we find that [X/Fe] ratios are solar at all ages. Conclusions. It is not possible to reconcile the anomalous behaviour of Ba and Y at young ages with standard stellar yields and Galactic chemical evolution model predictions. We explore different possible scenarios related to the behaviour of spectral lines, from the dependence on the different ionisation stages and the sensitivity to the presence of magnetic fields (through the Landé factor) to the first ionisation potential effect. We also investigate the possibility that they may arise from alterations of the structure of the stellar photosphere due to the increased levels of stellar activity that affect the spectral line formation, and consequently the derived abundances. These effects seem to be stronger in stars at ages of less than ∼ 100 Myr. However, we are still unable to explain these enhancements, and the Ba puzzle remains unsolved. With the present study we suggest that other elements, for example Sr, Zr, La, and Ce, might be more reliable tracer of the s-process at young ages, and we strongly encourage further critical observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 3259
Typ av publikation
tidskriftsartikel (3233)
forskningsöversikt (25)
konferensbidrag (1)
Typ av innehåll
refereegranskat (3211)
övrigt vetenskapligt/konstnärligt (38)
populärvet., debatt m.m. (10)
Författare/redaktör
Kochukhov, Oleg (117)
Quirrenbach, A. (109)
Randich, S. (109)
Gilmore, G. (106)
Hofmann, W. (102)
Aalto, Susanne, 1964 (101)
visa fler...
Vlemmings, Wouter, 1 ... (99)
Heiter, Ulrike (97)
Wagner, S. J. (96)
Bulik, T. (95)
Zdziarski, A. A. (94)
Boisson, C. (93)
Kluzniak, W. (93)
Moderski, R. (93)
Becherini, Yvonne (92)
Fontaine, G. (92)
Khelifi, B. (92)
Kosack, K. (92)
Moulin, E. (92)
Aharonian, F. (91)
Glicenstein, J. F. (91)
Komin, Nu. (91)
de Naurois, M. (91)
Ohm, S. (91)
Rieger, F. (91)
Rudak, B. (91)
Sahakian, V. (91)
Egberts, K. (90)
Gallant, Y. A. (90)
Hinton, J. A. (90)
Horns, D. (90)
Marandon, V. (90)
Marcowith, A. (90)
Niemiec, J. (90)
Ostrowski, M. (90)
Panter, M. (90)
Santangelo, A. (90)
Terrier, R. (90)
Segransan, D. (90)
Lohse, T. (89)
Djannati-Atai, A. (89)
Katarzynski, K. (89)
Renaud, M. (89)
Sol, H. (89)
Steenkamp, R. (89)
Venter, C. (89)
Zech, A. (89)
Reimer, O. (88)
Schwanke, U. (88)
van Eldik, C. (88)
visa färre...
Lärosäte
Stockholms universitet (1104)
Chalmers tekniska högskola (893)
Uppsala universitet (827)
Lunds universitet (552)
Kungliga Tekniska Högskolan (228)
Linnéuniversitetet (124)
visa fler...
Malmö universitet (69)
Luleå tekniska universitet (64)
Göteborgs universitet (45)
Umeå universitet (27)
Högskolan i Halmstad (22)
Linköpings universitet (11)
Mittuniversitetet (5)
RISE (3)
Högskolan Kristianstad (2)
Högskolan Dalarna (1)
Blekinge Tekniska Högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (3231)
Odefinierat språk (25)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3003)
Teknik (111)
Medicin och hälsovetenskap (7)
Lantbruksvetenskap (2)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy