SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X "

Sökning: L773:0012 1797 OR L773:1939 327X

  • Resultat 21-30 av 685
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Arner, Erik, et al. (författare)
  • Adipocyte Turnover : Relevance to Human Adipose Tissue Morphology
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:1, s. 105-109
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Adipose tissue may contain few large adipocytes (hypertrophy) or many small adipocytes (hyperplasia). We investigated factors of putative importance for adipose tissue morphology. RESEARCH DESIGN AND METHODS-Subcutaneous adipocyte size and total fat mass were compared in 764 subjects with BMI 18-60 kg/m(2). A morphology value was defined as tire difference between the measured adipocyte volume and the expected volume given by a curved-line fit for a given body fat mass and was related to insulin values. In 35 subjects, in vivo adipocyte turnover was measured by exploiting incorporation of atmospheric C-14 into DNA. RESULTS-Occurrence of hyperplasia (negative morphology value) or hypertrophy (positive morphology value) was independent of sex and body weight but con-elated with fasting plasma insulin levels and insulin sensitivity, independent of adipocyte volume (beta-coefficient = 0.3, P < 0.0001). Total adipocyte number and morphology were negatively related (r = -0.66); i.e., the total adipocyte number was greatest in pronounced hyperplasia and smallest in pronounced hypertrophy. The absolute number of new adipocytes generated each year was 70% lower (P < 0.001) in hypertrophy than in hyperplasia, and individual values for adipocyte generation and morphology were strongly related (r = 0.7, P < 0.001). The relative death rate (similar to 10% per year) or mean age of adipocytes (similar to 10 years) was not correlated with morphology. CONCLUSIONS-Adipose tissue morphology correlates with insulin measures and is linked to the total adipocyte number independently of sex and body fat level. Low generation rates of adipocytes associate with adipose tissue hypertrophy, whereas high generation rates associate with adipose hyperplasia. Diabetes 59:105-109, 2010
  •  
22.
  • Artner, Isabella, et al. (författare)
  • MafA and MafB Regulate Genes Critical to beta-Cells in a Unique Temporal Manner
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 59:10, s. 2530-2539
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Several transcription factors are essential to pancreatic islet beta-cell development, proliferation, and activity, including MafA and MafB. However, MafA and MafB are distinct from others in regard to temporal and islet cell expression pattern, with beta-cells affected by MafB only during development and exclusively by MafA in the adult. Our aim was to define the functional relationship between these closely related activators to the beta-cell. RESEARCH DESIGN AND METHODS-The distribution of MafA and MafB in the beta-cell population was determined immunohistochemically at various developmental and perinatal stages in mice. To identify genes regulated by MafB, microarray profiling was performed on wild-type and MafB(-/-) pancreata at embryonic day 18.5, with candidates evaluated by quantitative RT-PCR and in situ hybridization. The potential role of MafA in the expression of verified targets was next analyzed in adult islets of a pancreas-wide MafA mutant (termed MafA(Delta Panc)). RESULTS-MafB was produced in a larger fraction of beta-cells than MafA during development and found to regulate potential effectors of glucose sensing, hormone processing, vesicle formation, and insulin secretion. Notably, expression from many of these genes was compromised in MafA(Delta Panc) islets, suggesting that MafA is required to sustain expression in adults. CONCLUSIONS-Our results provide insight into the sequential manner by which MafA and MafB regulate islet beta-cell formation and maturation. Diabetes 59:2530-2539, 2010
  •  
23.
  • Arvidsson, E, et al. (författare)
  • Effects of different hypocaloric diets on protein secretion from adipose tissue of obese women
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 53:8, s. 1966-1971
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about common factors (e.g., macronutrients and energy supply) regulating the protein secretory function of adipose tissue. We therefore compared the effects of randomly assigned 10-week hypoenergetic (−600 kcal/day) diets with moderate-fat/moderate-carbohydrate or low-fat/high-carbohydrate content on circulating levels and production of proteins (using radioimmunoassays and enzyme-linked immunosorbent assays) from subcutaneous adipose tissue in 40 obese but otherwise healthy women. Similar results were obtained by the two diets. Body weight decreased by ∼7.5%. The secretion rate of leptin decreased by ∼40%, as did that of tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 and -8 decreased by 25–30%, whereas the secretion of plasminogen activator inhibitor 1 (PAI-1) and adiponectin did not show any changes. Regarding mRNA expression (by real-time PCR), only that of leptin and IL-6 decreased significantly. Circulating levels of leptin and PAI-1 decreased by 30 and 40%, respectively, but there were only minor changes in circulating TNF-α, IL-6, or adiponectin. In conclusion, moderate caloric restriction but not macronutrient composition influences the production and secretion of adipose tissue–derived proteins during weight reduction, leptin being the most sensitive and adiponectin and PAI-1 the least sensitive.
  •  
24.
  • Augestad, IL, et al. (författare)
  • Regulation of Glycemia in the Recovery Phase After Stroke Counteracts the Detrimental Effect of Obesity-Induced Type 2 Diabetes on Neurological Recovery
  • 2020
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 69:9, s. 1961-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • The interplay between obesity and type 2 diabetes (T2D) in poststroke recovery is unclear. Moreover, the impact of glucose control during the chronic phase after stroke is undetermined. We investigated whether obesity-induced T2D impairs neurological recovery after stroke by using a clinically relevant experimental design. We also investigated the potential efficacy of two clinically used T2D drugs: the dipeptidyl peptidase 4 inhibitor linagliptin and the sulfonylurea glimepiride. We induced transient middle cerebral artery occlusion (tMCAO) in T2D/obese mice (after 7 months of high-fat diet [HFD]) and age-matched controls. After stroke, we replaced HFD with standard diet for 8 weeks to mimic the poststroke clinical situation. Linagliptin or glimepiride were administered daily from 3 days after tMCAO for 8 weeks. We assessed neurological recovery weekly by upper-limb grip strength. Brain damage, neuroinflammation, stroke-induced neurogenesis, and atrophy of parvalbumin-positive (PV+) interneurons were quantified by immunohistochemistry. T2D/obesity impaired poststroke neurological recovery in association with hyperglycemia, neuroinflammation, and atrophy of PV+ interneurons. Both drugs counteracted these effects. In nondiabetic mice, only linagliptin accelerated recovery. These findings shed light on the interplay between obesity and T2D in stroke recovery. Moreover, they promote the use of rehabilitative strategies that are based on efficacious glycemia regulation, even if initiated days after stroke.
  •  
25.
  • Aydemir, O, et al. (författare)
  • Genetic Variation Within the HLA-DRA1 Gene Modulates Susceptibility to Type 1 Diabetes in HLA-DR3 Homozygotes
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 68:7, s. 1523-1527
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) involves the interaction of multiple gene variants, environmental factors, and immunoregulatory dysfunction. Major T1D genetic risk loci encode HLA-DR and -DQ. Genetic heterogeneity and linkage disequilibrium in the highly polymorphic HLA region confound attempts to identify additional T1D susceptibility loci. To minimize HLA heterogeneity, T1D patients (N = 365) and control subjects (N = 668) homozygous for the HLA-DR3 high-risk haplotype were selected from multiple large T1D studies and examined to identify new T1D susceptibility loci using molecular inversion probe sequencing technology. We report that risk for T1D in HLA-DR3 homozygotes is increased significantly by a previously unreported haplotype of three single nucleotide polymorphisms (SNPs) within the first intron of HLA-DRA1. The homozygous risk haplotype has an odds ratio of 4.65 relative to the protective homozygous haplotype in our sample. Individually, these SNPs reportedly function as “expression quantitative trait loci,” modulating HLA-DR and -DQ expression. From our analysis of available data, we conclude that the tri-SNP haplotype within HLA-DRA1 may modulate class II expression, suggesting that increased T1D risk could be attributable to regulated expression of class II genes. These findings could help clarify the role of HLA in T1D susceptibility and improve diabetes risk assessment, particularly in high-risk HLA-DR3 homozygous individuals.
  •  
26.
  • Baboota, Ritesh, et al. (författare)
  • Emerging Role of Bone Morphogenetic Protein 4 in Metabolic Disorders
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:2, s. 303-312
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone morphogenetic proteins (BMPs) are a group of signaling molecules that belong to the TGF-beta superfamily. Initially discovered for their ability to induce bone formation, BMPs are known to play a diverse and critical array of biological roles. We here focus on recent evidence showing that BMP4 is an important regulator of white/beige adipogenic differentiation with important consequences for thermogenesis, energy homeostasis, and development of obesity in vivo. BMP4 is highly expressed in, and released by, human adipose tissue, and serum levels are increased in obesity. Recent studies have now shown BMP4 to play an important role not only for white/beige/brown adipocyte differentiation and thermogenesis but also in regulating systemic glucose homeostasis and insulin sensitivity. It also has important suppressive effects on hepatic glucose production and lipid metabolism. Cellular BMP4 signaling/action is regulated by both ambient cell/systemic levels and several endogenous and systemic BMP antagonists. Reduced BMP4 signaling/action can contribute to the development of obesity, insulin resistance, and associated metabolic disorders. In this article, we summarize the pleiotropic functions of BMP4 in the pathophysiology of these diseases and also consider the therapeutic implications of targeting BMP4 in the prevention/treatment of obesity and its associated complications.
  •  
27.
  • Bach, D, et al. (författare)
  • Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:9, s. 2685-2693
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary gene mutated in Charcot-Marie-Tooth type 2A is mitofusin-2 (Mfn2). Mfn2 encodes a mitochondrial protein that participates in the maintenance of the mitochondrial network and that regulates mitochondrial metabolism and intracellular signaling. The potential for regulation of human Mfn2 gene expression in vivo is largely unknown. Based on the presence of mitochondrial dysfunction in insulin-resistant conditions, we have examined whether Mfn2 expression is dysregulated in skeletal muscle from obese or nonobese type 2 diabetic subjects, whether muscle Mfn2 expression is regulated by body weight loss, and the potential regulatory role of tumor necrosis factor (TNF)α or interleukin-6. We show that mRNA concentration of Mfn2 is decreased in skeletal muscle from both male and female obese subjects. Muscle Mfn2 expression was also reduced in lean or in obese type 2 diabetic patients. There was a strong negative correlation between the Mfn2 expression and the BMI in nondiabetic and type 2 diabetic subjects. A positive correlation between the Mfn2 expression and the insulin sensitivity was also detected in nondiabetic and type 2 diabetic subjects. To determine the effect of weight loss on Mfn2 mRNA expression, six morbidly obese subjects were subjected to weight loss by bilio-pancreatic diversion. Mean expression of muscle Mfn2 mRNA increased threefold after reduction in body weight, and a positive correlation between muscle Mfn2 expression and insulin sensitivity was again detected. In vitro experiments revealed an inhibitory effect of TNFα or interleukin-6 on Mfn2 expression in cultured cells. We conclude that body weight loss upregulates the expression of Mfn2 mRNA in skeletal muscle of obese humans, type 2 diabetes downregulates the expression of Mfn2 mRNA in skeletal muscle, Mfn2 expression in skeletal muscle is directly proportional to insulin sensitivity and is inversely proportional to the BMI, TNFα and interleukin-6 downregulate Mfn2 expression and may participate in the dysregulation of Mfn2 expression in obesity or type 2 diabetes, and the in vivo modulation of Mfn2 mRNA levels is an additional level of regulation for the control of muscle metabolism and could provide a molecular mechanism for alterations in mitochondrial function in obesity or type 2 diabetes.
  •  
28.
  • Badian, Reza A., et al. (författare)
  • Comparison of novel wide-field in vivo corneal confocal microscopy with skin biopsy for assessing peripheral neuropathy in type 2 diabetes
  • 2023
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 72:7, s. 908-917
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes, where skin biopsy assessing intraepi-dermal nerve fiber density (IENFD) plays an important diagnostic role. In vivo confocal microscopy (IVCM) of the corneal subbasal nerve plexus has been proposed as a noninvasive diagnostic modality for DPN. Direct compari-sons of skin biopsy and IVCM in controlled cohorts are lacking, as IVCM relies on subjective selection of images depicting only 0.2% of the nerve plexus. We compared these diagnostic modalities in a fixed-age cohort of 41 participants with type 2 diabetes and 36 healthy participants using machine algorithms to create wide-field image mosaics and quantify nerves in an area 37 times the size of prior studies to avoid human bias. In the same partici-pants, and at the same time point, no correlation between IENFD and corneal nerve density was found. Corneal nerve density did not correlate with clinical measures of DPN, including neuropathy symptom and disability scores, nerve conduction studies, or quantitative sensory tests. Our findings indicate that corneal and intraepidermal nerves likely mirror different aspects of nerve degeneration, where only intraepidermal nerves appear to reflect the clinical status of DPN, suggesting that scrutiny is warranted concerning methodologies of studies using corneal nerves to assess DPN.
  •  
29.
  • Baker, DJ, et al. (författare)
  • Glycogen phosphorylase inhibition in type 2 diabetes therapy: a systematic evaluation of metabolic and functional effects in rat skeletal muscle
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:8, s. 2453-2459
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibition of hepatic glycogen phosphorylase is a promising treatment strategy for attenuating hyperglycemia in type 2 diabetes. Crystallographic studies indicate, however, that selectivity between glycogen phosphorylase in skeletal muscle and liver is unlikely to be achieved. Furthermore, glycogen phosphorylase activity is critical for normal skeletal muscle function, and thus fatigue may represent a major development hurdle for this therapeutic strategy. We have carried out the first systematic evaluation of this important issue. The rat gastrocnemius-plantaris-soleus (GPS) muscle was isolated and perfused with a red cell suspension, containing 3 μmol/l glycogen phosphorylase inhibitor (GPi) or vehicle (control). After 60 min, the GPS muscle was snap-frozen (rest, n = 11 per group) or underwent 20 s of maximal contraction (n = 8, control; n = 9, GPi) or 10 min of submaximal contraction (n = 10 per group). GPi pretreatment reduced the activation of the glycogen phosphorylase a form by 16% at rest, 25% after 20 s, and 44% after 10 min of contraction compared with the corresponding control. AMP-mediated glycogen phosphorylase activation was impaired only at 10 min (by 21%). GPi transiently reduced muscle lactate production during contraction, but other than this, muscle energy metabolism and function remained unaffected at both contraction intensities. These data indicate that glycogen phosphorylase inhibition aimed at attenuating hyperglycaemia is unlikely to negatively impact muscle metabolic and functional capacity.
  •  
30.
  • Baker, DJ, et al. (författare)
  • The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:6, s. 1855-1861
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycogen phosphorylase inhibition represents a promising strategy to suppress inappropriate hepatic glucose output, while muscle glycogen is a major source of fuel during contraction. Glycogen phosphorylase inhibitors (GPi) currently being investigated for the treatment of type 2 diabetes do not demonstrate hepatic versus muscle glycogen phosphorylase isoform selectivity and may therefore impair patient aerobic exercise capabilities. Skeletal muscle energy metabolism and function are not impaired by GPi during high-intensity contraction in rat skeletal muscle; however, it is unknown whether glycogen phosphorylase inhibitors would impair function during prolonged lower-intensity contraction. Utilizing a novel red cell–perfused rodent gastrocnemius-plantaris-soleus system, muscle was pretreated for 60 min with either 3 μmol/l free drug GPi (n = 8) or vehicle control (n = 7). During 60 min of aerobic contraction, GPi treatment resulted in ∼35% greater fatigue. Muscle glycogen phosphorylase a form (P &lt; 0.01) and maximal activity (P &lt; 0.01) were reduced in the GPi group, and postcontraction glycogen (121.8 ± 16.1 vs. 168.3 ± 8.5 mmol/kg dry muscle, P &lt; 0.05) was greater. Furthermore, lower muscle lactate efflux and glucose uptake (P &lt; 0.01), yet higher muscle Vo2, support the conclusion that carbohydrate utilization was impaired during contraction. Our data provide new confirmation that muscle glycogen plays an essential role during submaximal contraction. Given the critical role of exercise prescription in the treatment of type 2 diabetes, it will be important to monitor endurance capacity during the clinical evaluation of nonselective GPi. Alternatively, greater effort should be devoted toward the discovery of hepatic-selective GPi, hepatic-specific drug delivery strategies, and/or alternative strategies for controlling excess hepatic glucose production in type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 685
Typ av publikation
tidskriftsartikel (633)
konferensbidrag (48)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (621)
övrigt vetenskapligt/konstnärligt (64)
Författare/redaktör
Groop, Leif (67)
Zierath, JR (35)
Efendic, S (32)
Arner, P (31)
Berggren, PO (27)
Tuomi, Tiinamaija (26)
visa fler...
OSTENSON, CG (25)
Lyssenko, Valeriya (25)
Korsgren, Olle (24)
Lernmark, Åke (23)
Almgren, Peter (22)
Ahren, Bo (21)
Franks, Paul W. (19)
Krook, A (18)
McCarthy, Mark I (18)
Wareham, Nicholas J. (17)
Hansen, Torben (17)
Langenberg, Claudia (16)
Franks, Paul (15)
Ryden, M (15)
Ling, Charlotte (14)
Isomaa, Bo (14)
Vaag, Allan (14)
Pedersen, Oluf (14)
Ingelsson, Erik (14)
WAHREN, J (14)
Lind, Lars (13)
Orho-Melander, Marju (13)
Ludvigsson, Johnny (13)
Eliasson, Lena (13)
Nilsson, Peter (12)
Rorsman, Patrik (12)
Orešič, Matej, 1967- (12)
Walker, Mark (12)
Laakso, Markku (11)
Knowler, William C. (11)
Salehi, S Albert (10)
Ladenvall, Claes (10)
Pedersen, O. (10)
Barroso, Ines (10)
Ahlqvist, Emma (9)
Renström, Erik (9)
Wierup, Nils (9)
Mulder, Hindrik (9)
Grill, V (9)
Jonsson, Anna (9)
Kuusisto, Johanna (9)
Scott, Robert A (9)
Wallberg-Henriksson, ... (9)
Toppari, Jorma (9)
visa färre...
Lärosäte
Karolinska Institutet (314)
Lunds universitet (209)
Uppsala universitet (135)
Göteborgs universitet (71)
Umeå universitet (51)
Linköpings universitet (26)
visa fler...
Örebro universitet (23)
Stockholms universitet (10)
Chalmers tekniska högskola (5)
Kungliga Tekniska Högskolan (2)
Gymnastik- och idrottshögskolan (2)
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
Högskolan Dalarna (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (683)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (355)
Naturvetenskap (6)
Samhällsvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy