SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0969 9961 "

Sökning: L773:0969 9961

  • Resultat 11-20 av 192
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Andreoli, Laura, et al. (författare)
  • Distinct patterns of dyskinetic and dystonic features following D1 or D2 receptor stimulation in a mouse model of parkinsonism
  • 2021
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 157
  • Tidskriftsartikel (refereegranskat)abstract
    • L-DOPA-induced dyskinesia (LID) is a significant complication of dopamine replacement therapy in Parkinson's disease (PD), and the specific role of different dopamine receptors in this disorder is poorly understood. We set out to compare patterns of dyskinetic behaviours induced by the systemic administration of L-DOPA and D1 or D2 receptor (D1R, D2R) agonists in mice with unilateral 6-hydroxydopamine lesions. Mice were divided in four groups to receive increasing doses of L-DOPA, a D1R agonist (SKF38393), a D2/3 agonist (quinpirole), or a selective D2R agonist (sumanirole). Axial, limb and orofacial abnormal involuntary movements (AIMs) were rated using a well-established method, while dystonic features were quantified in different body segments using a new rating scale. Measures of abnormal limb and trunk posturing were extracted from high-speed videos using a software for markerless pose estimation (DeepLabCut). While L-DOPA induced the full spectrum of dyskinesias already described in this mouse model, SKF38393 induced mostly orofacial and limb AIMs. By contrast, both of the D2-class agonists (quinpirole, sumanirole) induced predominantly axial AIMs. Dystonia ratings revealed that these agonists elicited marked dystonic features in trunk/neck, forelimbs, and hindlimbs, which were overall more severe in sumanirole-treated mice. Accordingly, sumanirole induced pronounced axial bending and hindlimb divergence in the automated video analysis. In animals treated with SKF38393, the only appreciable dystonic-like reaction consisted in sustained tail dorsiflexion and stiffness. We next compared the effects of D1R or D2R selective antagonists in L-DOPA-treated mice, where only the D2R antagonist had a significant effect on dystonic features. Taken together these results indicate that the dystonic components of LID are predominantly mediated by the D2R.
  •  
12.
  • Andsberg, Gunnar, et al. (författare)
  • Neuropathological and behavioral consequences of adeno-associated viral vector-mediated continuous intrastriatal neurotrophin delivery in a focal ischemia model in rats.
  • 2002
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 9:2, s. 187-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were continuously delivered to the striatum at biologically active levels via recombinant adeno-associated viral (rAAV) gene transfer 4-5 weeks prior to 30 min of middle cerebral artery occlusion (MCAO). The magnitude of the deficits in a battery of behavioral tests designed to assess striatal function was highly correlated to the extent of ischemic damage determined by unbiased stereological estimations of striatal neuron numbers. The delivery of neurotrophins lead to mild functional improvements in the ischemia-induced motor impairments assessed 3-5 weeks after the insult, in agreement with a small but significant increase of the survival of dorsolateral striatal neurons. Detailed phenotypic analysis demonstrated that the parvalbumin-containing interneurons were spared to a greater extent by the neurotrophin treatment as compared to the projection neurons, which agreed with the specificity for interneuron transduction by the rAAV vector. These data show the advantage of the never previously performed combination of precise quantification of the ischemia-induced neuropathology along with detailed behavioural analysis for assessing neuroprotection after stroke. We observe that intrastriatal delivery of NGF and BDNF using a viral vector system can mitigate, albeit only moderately, neuronal death following stroke, which leads to detectable functional sparing. (c)2002 Elsevier Science (USA).
  •  
13.
  •  
14.
  • Annelies, Nonneman, et al. (författare)
  • Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis
  • 2018
  • Ingår i: Neurobiology of Disease. - : Academic Press. - 0969-9961 .- 1095-953X. ; 119, s. 26-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1(G93A) mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1(G93A) mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1(G93A) mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.
  •  
15.
  • Arkan, Sertan, et al. (författare)
  • DNAJB6 suppresses alpha-synuclein induced pathology in an animal model of Parkinson's disease
  • 2021
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 158
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: α-synuclein (α-syn) aggregation can lead to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) as invariably observed in patients with Parkinson's Disease (PD). The co-chaperone DNAJB6 has previously been found to be expressed at higher levels in PD patients than in control subjects and was also found in Lewy bodies. Our previous experiments showed that knock out of DNAJB6 induced α-syn aggregation in cellular level. However, effects of overexpression of DNAJB6 against α-syn aggregation remains to be investigated. Methods: We used a α-syn CFP/YFP HEK293 FRET cell line to investigate the effects of overexpression of DNAJB6 in cellular level. α-syn aggregation was induced by transfection α-syn preformed fibrils (PPF), then was measured FRET analysis. We proceeded to investigate if DNAJB6b can impair α-syn aggregation and toxicity in an animal model and used adeno associated vira (AAV6) designed to overexpress of human wt α-syn, GFP-DNAJB6 or GFP in rats. These vectors were injected into the SNpc of the rats, unilaterally. Rats injected with vira to express α-syn along with GFP in the SNpc where compared to rats expressing α-syn and GFP-DNAJB6. We evaluated motor functions, dopaminergic cell death, and axonal degeneration in striatum. Results: We show that DNAJB6 prevent α-syn aggregation induced by α-syn PFF's, in a cell culture model. In addition, we observed α-syn overexpression caused dopaminergic cell death and that this was strongly reduced by co-expression of DNAJB6b. The lesion caused by α-syn overexpression resulted in behavior deficits, which increased over time as seen in stepping test, which was rescued by co-expression of DNAJB6b. Conclusion: We here demonstrate for the first time that DNAJB6 is a strong suppressor of α-syn aggregation in cells and in animals and that this results in a suppression of dopaminergic cell death and PD related motor deficits in an animal model of PD.
  •  
16.
  •  
17.
  •  
18.
  • Berglind, Fredrik, et al. (författare)
  • Optogenetic inhibition of chemically induced hypersynchronized bursting in mice.
  • 2014
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 65, s. 133-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Synchronized activity is common during various physiological operations but can culminate in seizures and consequently in epilepsy in pathological hyperexcitable conditions in the brain. Many types of seizures are not possible to control and impose significant disability for patients with epilepsy. Such intractable epilepsy cases are often associated with degeneration of inhibitory interneurons in the cortical areas resulting in impaired inhibitory drive onto the principal neurons. Recently emerging optogenetic technique has been proposed as an alternative approach to control such seizures but whether it may be effective in situations where inhibitory processes in the brain are compromised has not been addressed. Here we used pharmacological and optogenetic techniques to block inhibitory neurotransmission and induce epileptiform activity in vitro and in vivo. We demonstrate that NpHR-based optogenetic hyperpolarization and thereby inactivation of a principal neuronal population in the hippocampus is effectively attenuating seizure activity caused by disconnected network inhibition both in vitro and in vivo. Our data suggest that epileptiform activity in the hippocampus caused by impaired inhibition may be controlled by optogenetic silencing of principal neurons and potentially can be developed as an alternative treatment for epilepsy.
  •  
19.
  • Bez, Francesco, et al. (författare)
  • Dramatic differences in susceptibility to L-DOPA-induced dyskinesia between mice that are aged before or after a nigrostriatal dopamine lesion
  • 2016
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 94, s. 213-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice with striatal 6-hydroxydopamine (6-OHDA) lesions are widely used as a model to study the effects of neurorestorative, symptomatic, or antidyskinetic treatments for Parkinson's disease (PD). The standard praxis is to utilize young adult mice with relatively acute 6-OHDA lesions. However, long post-lesion intervals may be required for longitudinal studies of treatment interventions, and the long-term stability of the model's behavioral and cellular phenotypes is currently unknown. In this study, C57Bl/6J mice sustained unilateral striatal 6-OHDA lesions at approx. 2 months of age, and were allowed to survive for 1, 10 or 22 months. Another group of mice sustained the lesion at the age of 23 months and survived for one month thereafter. Baseline and drug-induced motor behaviors were examined using a battery of tests (utilizing also a novel video-based methodology). The extent of nigral dopamine cell loss was stable across post-lesion intervals and ages. However, a prominent sprouting of both dopaminergic and serotonergic fibers was detected in the caudate-putamen in animals that survived until 10 and 22 months post-lesion. This phenomenon was associated with a recovery of baseline motor deficits, and with a lack of dyskinetic responses upon treatment with either L-DOPA or apomorphine. By contrast, mice sustaining the lesion at 23 months of age showed a striking susceptibility to the dyskinetic effects of both L-DOPA and apomorphine, which was associated with a pronounced drug-induced upregulation of ∆FosB in the ventrolateral striatum. The results reveal a remarkable compensatory capacity of a damaged nigrostriatal pathway in ageing mice, and how this impacts on the response to dopaminergic therapies for PD.
  •  
20.
  • Björklund, Anders, et al. (författare)
  • Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson's disease
  • 1997
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 4:3-4, s. 186-200
  • Forskningsöversikt (refereegranskat)abstract
    • Intrastriatal 6-hydroxydopamine injections in rats induce partial lesions of the nigrostriatal dopamine (DA) system which are accompanied by a delayed and protracted degeneration of DA neurons within the substantia nigra. By careful selection of the dose and placement of the toxin it is possible to obtain reproducible and regionally defined partial lesions which are well correlated with stable functional deficits, not only in drug-induced behaviors but also in spontaneous motoric and sensorimotoric function, which are analogous to the symptoms seen in patients during early stages of Parkinson's disease. The intrastriatal partial lesion model has proved to be particularly useful for studies on the mechanisms of action of neurotrophic factors since it offers opportunities to investigate both protection of degenerating DA neurons during the acute phases after the lesion and stimulation of regeneration and functional recovery during the chronic phase of the postlesion period when a subset of the spared nigral DA neurons persist in an atrophic and dysfunctional state. In the in vivo experiments performed in this model glial cell line-derived neurotrophic factor (GDNF) has been shown to exert neurotrophic effects both at the level of the cell bodies in the substantia nigra and at the level of the axon terminals in the striatum. Intrastriatal administration of GDNF appears to be a particularly effective site for induction of axonal sprouting and regeneration accompanied by recovery of spontaneous sensorimotor behaviors in the chronically lesioned nigrostriatal dopamine system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 192
Typ av publikation
tidskriftsartikel (184)
forskningsöversikt (8)
Typ av innehåll
refereegranskat (190)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Björklund, Anders (8)
Zetterberg, Henrik, ... (8)
Lindvall, Olle (8)
Lundblad, Martin (7)
Kokaia, Zaal (6)
Blennow, Kaj, 1958 (5)
visa fler...
Ekdahl Clementson, C ... (5)
Zhu, J. (4)
Winblad, B (4)
Hagberg, Henrik, 195 ... (4)
Nordberg, A (3)
Diez, M (3)
Andersen, Peter M. (3)
Olson, L (3)
Möller, Christer (3)
Lannfelt, Lars (3)
Lindholm, Dan (2)
Bernardi, G. (2)
Link, H (2)
Almkvist, Ove (2)
Vandenberghe, R (2)
Londos, Elisabet (2)
Sandberg, Mats, 1953 (2)
Mix, E (2)
Mariotti, C. (2)
Hillert, J (2)
Olsson, T (2)
Ljunggren, HG (2)
Padovani, A (2)
Savic, I (2)
Wierup, Nils (2)
Lavebratt, C (2)
Chen, ZG (2)
Spenger, C (2)
Brinkmalm, Gunnar (2)
Ingelsson, Martin (2)
Söderberg, Linda (2)
Andersson, M (2)
Smith, C (2)
Hardy, J (2)
Engel, J (2)
Andersson, My (2)
Mattsson, Bengt (2)
Adolfsson, R. (2)
Hokfelt, T (2)
Canlon, B (2)
Nath, Sangeeta (2)
Hansson, Oskar (2)
Blennow, Kaj (2)
Monni, Emanuela (2)
visa färre...
Lärosäte
Lunds universitet (87)
Karolinska Institutet (75)
Göteborgs universitet (17)
Uppsala universitet (14)
Umeå universitet (7)
Linköpings universitet (7)
visa fler...
Kungliga Tekniska Högskolan (5)
Stockholms universitet (3)
Örebro universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (192)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (113)
Naturvetenskap (7)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy