SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1464 7931 OR L773:1469 185X "

Sökning: L773:1464 7931 OR L773:1469 185X

  • Resultat 21-30 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Budd, Graham, et al. (författare)
  • The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution
  • 2017
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 92:1, s. 446-473
  • Tidskriftsartikel (refereegranskat)abstract
    • The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the ‘Cambrian explosion’, is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so-called ‘Ediacaran’ taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total-group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran–Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat-dominated substrates that the enigmatic Ediacaran taxa were associated with, the so-called ‘Cambrian substrate revolution’, leading to the loss of almost all Ediacara-aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late-Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara-style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor.
  •  
22.
  • Chapron, Guillaume, et al. (författare)
  • Predators and the public trust
  • 2017
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 92, s. 248-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Many democratic governments recognize a duty to conserve environmental resources, including wild animals, as a public trust for current and future citizens. These public trust principles have informed two centuries of U.S.A. Supreme Court decisions and environmental laws worldwide. Nevertheless numerous populations of large-bodied, mammalian carnivores (predators) were eradicated in the 20th century. Environmental movements and strict legal protections have fostered predator recoveries across the U.S.A. and Europe since the 1970s. Now subnational jurisdictions are regaining management authority from central governments for their predator subpopulations. Will the history of local eradication repeat or will these jurisdictions adopt public trust thinking and their obligation to broad public interests over narrower ones? We review the role of public trust principles in the restoration and preservation of controversial species. In so doing we argue for the essential roles of scientists from many disciplines concerned with biological diversity and its conservation. We look beyond species endangerment to future generations' interests in sustainability, particularly non-consumptive uses. Although our conclusions apply to all wild organisms, we focus on predators because of the particular challenges they pose for government trustees, trust managers, and society. Gray wolves Canis lupus L. deserve particular attention, because detailed information and abundant policy debates across regions have exposed four important challenges for preserving predators in the face of interest group hostility. One challenge is uncertainty and varied interpretations about public trustees' responsibilities for wildlife, which have created a mosaic of policies across jurisdictions. We explore how such mosaics have merits and drawbacks for biodiversity. The other three challenges to conserving wildlife as public trust assets are illuminated by the biology of predators and the interacting behavioural ecologies of humans and predators. The scientific community has not reached consensus on sustainable levels of human-caused mortality for many predator populations. This challenge includes both genuine conceptual uncertainty and exploitation of scientific debate for political gain. Second, human intolerance for predators exposes value conflicts about preferences for some wildlife over others and balancing majority rule with the protection of minorities in a democracy. We examine how differences between traditional assumptions and scientific studies of interactions between people and predators impede evidence-based policy. Even if the prior challenges can be overcome, well-reasoned policy on wild animals faces a greater challenge than other environmental assets because animals and humans change behaviour in response to each other in the short term. These coupled, dynamic responses exacerbate clashes between uses that deplete wildlife and uses that enhance or preserve wildlife. Viewed in this way, environmental assets demand sophisticated, careful accounting by disinterested trustees who can both understand the multidisciplinary scientific measurements of relative costs and benefits among competing uses, and justly balance the needs of all beneficiaries including future generations. Without public trust principles, future trustees will seldom prevail against narrow, powerful, and undemocratic interests. Without conservation informed by public trust thinking predator populations will face repeated cycles of eradication and recovery.Our conclusions have implications for the many subfields of the biological sciences that address environmental trust assets from the atmosphere to aquifers.
  •  
23.
  • Clark, M. S., et al. (författare)
  • Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics
  • 2020
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 95:6, s. 1812-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO(3)crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site-associated DNA sequencing (RAD-Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD-Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade-offs in animal metabolism. The cellular costs are still debated, with CaCO(3)precipitation estimates ranging from 1-2 J/mg to 17-55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (similar to 29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage-specific proteins and unique combinations of co-opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes forin situlocalization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats - CRISPR-associated protein 9 (CRISPR-Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite-binding) protein plays a significant role in structured nacre crystal growth and that theLsdia1gene sets shell chirality inLymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future-proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.
  •  
24.
  • Edelaar, Pim, 1970-, et al. (författare)
  • A generalised approach to the study and understanding of adaptive evolution
  • 2023
  • Ingår i: Biological Reviews. - : John Wiley & Sons. - 1464-7931 .- 1469-185X. ; 98:1, s. 352-375
  • Tidskriftsartikel (refereegranskat)abstract
    • Evolutionary theory has made large impacts on our understanding and management of the world, in part because it has been able to incorporate new data and new insights successfully. Nonetheless, there is currently a tension between certain biological phenomena and mainstream evolutionary theory. For example, how does the inheritance of molecular epigenetic changes fit into mainstream evolutionary theory? Is niche construction an evolutionary process? Is local adaptation via habitat choice also adaptive evolution? These examples suggest there is scope (and perhaps even a need) to broaden our views on evolution. We identify three aspects whose incorporation into a single framework would enable a more generalised approach to the understanding and study of adaptive evolution: (i) a broadened view of extended phenotypes; (ii) that traits can respond to each other; and (iii) that inheritance can be non-genetic. We use causal modelling to integrate these three aspects with established views on the variables and mechanisms that drive and allow for adaptive evolution. Our causal model identifies natural selection and non-genetic inheritance of adaptive parental responses as two complementary yet distinct and independent drivers of adaptive evolution. Both drivers are compatible with the Price equation; specifically, non-genetic inheritance of parental responses is captured by an often-neglected component of the Price equation. Our causal model is general and simplified, but can be adjusted flexibly in terms of variables and causal connections, depending on the research question and/or biological system. By revisiting the three examples given above, we show how to use it as a heuristic tool to clarify conceptual issues and to help design empirical research. In contrast to a gene-centric view defining evolution only in terms of genetic change, our generalised approach allows us to see evolution as a change in the whole causal structure, consisting not just of genetic but also of phenotypic and environmental variables.
  •  
25.
  • Eriksson, Ove (författare)
  • Evolution of angiosperm seed disperser mutualisms : the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores
  • 2016
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 91:1, s. 168-186
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of interactions between angiosperms and fruit-eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm-frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm-frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm-frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm-frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene-Oligocene boundary (around 34Mya) resulted in more semi-open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a flying frugivore niche' exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families, and many of the originations of fleshy fruits occurred well after the peak in the early Eocene. (vi) During periods associated with environmental change altering coevolutionary networks and opening of niche space, reciprocal coevolution may result in strong directional selection formative for both fruit and frugivore evolution. Further evidence is needed to test this hypothesis. Based on the abundance of plant lineages with various forms of fleshy fruits, and the diversity of frugivores, it is suggested that periods of rapid coevolution in angiosperms and frugivores occurred numerous times during the 80million years of angiosperm-frugivore evolution.
  •  
26.
  • Fox, Anthony D., et al. (författare)
  • Agriculture and herbivorous waterfowl : a review of the scientific basis for improved management
  • 2017
  • Ingår i: Biological Reviews. - : Wiley-Blackwell. - 1464-7931 .- 1469-185X. ; 92:2, s. 854-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Swans, geese and some ducks (Anatidae) are obligate herbivores, many are important quarry species and all contribute to a variety of ecosystem services. Population growth and shifting ranges have led to increasing proximity to man and thus increasing conflicts. We review and synthesize the role of these birds as herbivores on agricultural land (cropland, rotational grassland and pasture) and other terrestrial habitats where conflict with human interests may occur. A bibliographic analysis of peer-reviewed papers (N = 359) shows that publication activity peaked in 1991-2000 in North America and 2000-2010 in Europe, and has decreased since. Taxonomic and geographical biases are obvious in research to date: Snow Goose Chen caerulescens was the most studied species (N = 98), and Canada Branta canadensis, Barnacle B. leucopsis and Brent geese B. bernicla all featured in more than 40 studies; most studies originated in northwest Europe or North America, very few have been carried out in Asia and European Russia. Onthe basis of nutrient/energy budgets of herbivorous waterfowl, it is evident that dense single-species crops (such as rotational grassland, early-growth cereals and root crops) and spilled grain in agricultural landscapes offer elevated energetic and nutritional intake rates of food of higher quality compared to natural or semi-natural vegetation. Hence, although affected by seasonal nutritional demands, proximity to roost, field size, disturbance levels, access to water, food depletion and snow cover, agricultural landscapes tend to offer superior foraging opportunities over natural habitats, creating potential conflict with agriculture. Herbivorous waterfowl select for high protein, soluble carbohydrate and water content, high digestibility as well as low fibre and phenolic compounds, but intake rates from grazing varied with goose body and bill morphology, creating species-specific loci for conflict. Crop damage by trampling and puddling has not been demonstrated convincingly, nor do waterfowl faeces deter grazing stock, but where consumption of crops evidently reduces yields this causes conflict with farmers. Studies show that it is difficult and expensive to assess the precise impacts of waterfowl feeding on yield loss because of other sources of variation. However, less damage has been documented from winter grazing compared to spring grazing and yield loss after spring grazing on grassland appears more pronounced than losses on cereal fields. Although yield losses at national scales are trivial, individual farmers in areas of greatest waterfowl feeding concentrations suffer disproportionately, necessitating improved solutions to conflict. Accordingly, we review the efficacy of population management, disturbance, provision of alternative feeding areas, compensation and large-scale stakeholder involvement and co-management as options for resolving conflict based on the existing literature and present a framework of management advice for the future. We conclude with an assessment of the research needs for the immediate future to inform policy development, improve management of waterfowl populations and reduce conflict with agriculture.
  •  
27.
  • Ghisbain, Guillaume, et al. (författare)
  • Expanding insect pollinators in the Anthropocene
  • 2021
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 96:6, s. 2755-2770
  • Tidskriftsartikel (refereegranskat)abstract
    • Global changes are severely affecting pollinator insect communities worldwide, resulting in repeated patterns of species extirpations and extinctions. Whilst negative population trends within this functional group have understandably received much attention in recent decades, another facet of global changes has been overshadowed: species undergoing expansion. Here, we review the factors and traits that have allowed a fraction of the pollinating entomofauna to take advantage of global environmental change. Sufficient mobility, high resistance to acute heat stress, and inherent adaptation to warmer climates appear to be key traits that allow pollinators to persist and even expand in the face of climate change. An overall flexibility in dietary and nesting requirements is common in expanding species, although niche specialization can also drive expansion under specific contexts. The numerous consequences of wild and domesticated pollinator expansions, including competition for resources, pathogen spread, and hybridization with native wildlife, are also discussed. Overall, we show that the traits and factors involved in the success stories of expanding pollinators are mostly species specific and context dependent, rendering generalizations of 'winning traits' complicated. This work illustrates the increasing need to consider expansion and its numerous consequences as significant facets of global changes and encourages efforts to monitor the impacts of expanding insect pollinators, particularly exotic species, on natural ecosystems.
  •  
28.
  • Green, Andy J., et al. (författare)
  • Ecosystem services provided by waterbirds
  • 2014
  • Ingår i: Biological Reviews. - : Wiley-Blackwell. - 1464-7931 .- 1469-185X. ; 89:1, s. 105-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem services are ecosystem processes that directly or indirectly benefit human well-being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional rolein ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation.
  •  
29.
  • Hyndes, G. A., et al. (författare)
  • The role of inputs of marine wrack and carrion in sandy-beach ecosystems: a global review
  • 2022
  • Ingår i: Biological Reviews Cambridge Philosophical Society. - : Wiley. - 1464-7931 .- 1469-185X. ; 97:6, s. 2127-61
  • Forskningsöversikt (refereegranskat)abstract
    • Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed 'wrack', on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source ('carrion') for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as 'beach cleaning and grooming'. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.
  •  
30.
  • Kissling, W. Daniel, et al. (författare)
  • Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale
  • 2018
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 93:1, s. 600-625
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 Cambridge Philosophical Society. Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 68
Typ av publikation
tidskriftsartikel (43)
forskningsöversikt (25)
Typ av innehåll
refereegranskat (68)
Författare/redaktör
Nilsson, Christer (3)
Smith, Henrik G. (2)
Roslin, Tomas (2)
Persson, Anna S. (2)
Elmberg, Johan (2)
Meineri, Eric (1)
visa fler...
Hylander, Kristoffer (1)
Fick, Jerker (1)
Hansson, Bengt (1)
Abarenkov, Kessy (1)
Bahram, Mohammad (1)
Nilsson, R. Henrik, ... (1)
Schigel, Dmitry (1)
Morris, J. (1)
Ahlberg, Per E. (1)
Innocenti, Paolo (1)
Morrow, Edward H. (1)
Ekroos, Johan (1)
Moretti, Marco (1)
Aguilar-Trigueros, C ... (1)
Bonebrake, Timothy C ... (1)
Cagnolo, Luciano (1)
Lankinen, Åsa (1)
Ibanez, CF (1)
Obst, Matthias, 1974 (1)
Power, D. M. (1)
Sundell, Kristina, 1 ... (1)
Warrant, Eric (1)
Araujo, Rafael (1)
Johansson, Björn (1)
Clough, Yann (1)
Andersen, Jesper H. (1)
Jensen, Sören (1)
Angeler, David (1)
Merritt, David M. (1)
Öckinger, Erik (1)
Bommarco, Riccardo (1)
Angerbjörn, Anders (1)
Biesmeijer, Jacobus ... (1)
Kissling, W. Daniel (1)
Hambäck, Peter A. (1)
Kvarnemo, Charlotta, ... (1)
Bengtsson, Jan (1)
Hedenström, Anders (1)
Norén, Karin (1)
Duarte, C (1)
Braga Goncalves, Ine ... (1)
Sutherland, William ... (1)
Forsman, Anders (1)
Wheat, Christopher W ... (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (16)
Lunds universitet (14)
Stockholms universitet (12)
Uppsala universitet (11)
Göteborgs universitet (8)
Umeå universitet (7)
visa fler...
Karlstads universitet (3)
Högskolan Kristianstad (2)
Linköpings universitet (2)
Karolinska Institutet (2)
Linnéuniversitetet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (68)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (61)
Lantbruksvetenskap (5)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy