SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1471 2148 OR L773:1471 2148 "

Sökning: L773:1471 2148 OR L773:1471 2148

  • Resultat 61-70 av 203
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Irestedt, Martin, et al. (författare)
  • An unexpectedly long history of sexual selection in birds-of-paradise.
  • 2009
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 9, s. 235-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The birds-of-paradise (Paradisaeidae) form one of the most prominent avian examples of sexual selection and show a complex biogeographical distribution. The family has accordingly been used as a case-study in several significant evolutionary and biogeographical syntheses. As a robust phylogeny of the birds-of-paradise has been lacking, these hypotheses have been tentative and difficult to assess. Here we present a well supported species phylogeny with divergence time estimates of the birds-of-paradise. We use this to assess if the rates of the evolution of sexually selected traits and speciation have been excessively high within the birds-of-paradise, as well as to re-interpret biogeographical patterns in the group.RESULTS: The phylogenetic results confirm some traditionally recognized relationships but also suggest novel ones. Furthermore, we find that species pairs are geographically more closely linked than previously assumed. The divergence time estimates suggest that speciation within the birds-of-paradise mainly took place during the Miocene and the Pliocene, and that several polygynous and morphologically homogeneous genera are several million years old. Diversification rates further suggest that the speciation rate within birds-of-paradise is comparable to that of the enitre core Corvoidea.CONCLUSION: The estimated ages of morphologically homogeneous and polygynous genera within the birds-of-paradise suggest that there is no need to postulate a particularly rapid evolution of sexually selected morphological traits. The calculated divergence rates further suggest that the speciation rate in birds-of-paradise has not been excessively high. Thus the idea that sexual selection could generate high speciation rates and rapid changes in sexual ornamentations is not supported by our birds-of-paradise data. Potentially, hybridization and long generation times in polygynous male birds-of-paradise have constrained morphological diversification and speciation, but external ecological factors on New Guinea may also have allowed the birds-of-paradise to develop and maintain magnificent male plumages. We further propose that the restricted but geographically complex distributions of birds-of-paradise species may be a consequence of the promiscuous breeding system.
  •  
62.
  • Irestedt, Martin, et al. (författare)
  • Convergent evolution, habitat shifts and variable diversification rates in the ovenbird-woodcreeper family (Furnariidae).
  • 2009
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 9, s. 268-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The Neotropical ovenbird-woodcreeper family (Furnariidae) is an avian group characterized by exceptionally diverse ecomorphological adaptations. For instance, members of the family are known to construct nests of a remarkable variety. This offers a unique opportunity to examine whether changes in nest design, accompanied by expansions into new habitats, facilitates diversification. We present a multi-gene phylogeny and age estimates for the ovenbird-woodcreeper family and use these results to estimate the degree of convergent evolution in both phenotype and habitat utilisation. Furthermore, we discuss whether variation in species richness among ovenbird clades could be explained by differences in clade-specific diversification rates, and whether these rates differ among lineages with different nesting habits. In addition, the systematic positions of some enigmatic ovenbird taxa and the postulated monophyly of some species-rich genera are evaluated.RESULTS: The phylogenetic results reveal new examples of convergent evolution and show that ovenbirds have independently colonized open habitats at least six times. The calculated age estimates suggest that the ovenbird-woodcreeper family started to diverge at ca 33 Mya, and that the timing of habitat shifts into open environments may be correlated with the aridification of South America during the last 15 My. The results also show that observed large differences in species richness among clades can be explained by a substantial variation in net diversification rates. The synallaxines, which generally are adapted to dry habitats and build exposed vegetative nests, had the highest diversification rate of all major furnariid clades.CONCLUSION: Several key features may have played an important role for the radiation and evolution of convergent phenotypes in the ovenbird-woodcreeper family. Our results suggest that changes in nest building strategy and adaptation to novel habitats may have played an important role in a diversification that included multiple radiations into more open and bushy environments. The synallaxines were found to have had a particularly high diversification rate, which may be explained by their ability to build exposed vegetative nests and thus to expand into a variety of novel habitats that emerged during a period of cooling and aridification in South America.
  •  
63.
  • Irestedt, Martin, et al. (författare)
  • Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors
  • 2004
  • Ingår i: BMC Evolutionary Biology. - : BioMed Central. - 1471-2148. ; 4:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The typical antbirds (Thamnophilidae) form a monophyletic and diverse family of suboscine passerines that inhabit neotropical forests. However, the phylogenetic relationships within this assemblage are poorly understood. Herein, we present a hypothesis of the generic relationships of this group based on Bayesian inference analyses of two nuclear introns and the mitochondrial cytochrome b gene. The level of phylogenetic congruence between the individual genes has been investigated utilizing Bayes factors. We also explore how changes in the substitution models affected the observed incongruence between partitions of our data set.
  •  
64.
  • Janssen, Ralf, et al. (författare)
  • Conservation, loss, and redeployment of Wnt ligands in protostomes : implications for understanding the evolution of segment formation
  • 2010
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 10, s. 374-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Wnt genes encode secreted glycoprotein ligands that regulate a wide range of developmental processes, including axis elongation and segmentation. There are thirteen subfamilies of Wnt genes in metazoans and this gene diversity appeared early in animal evolution. The loss of Wnt subfamilies appears to be common in insects, but little is known about the Wnt repertoire in other arthropods, and moreover the expression and function of these genes have only been investigated in a few protostomes outside the relatively Wnt-poor model species Drosophila melanogaster and Caenorhabditis elegans. To investigate the evolution of this important gene family more broadly in protostomes, we surveyed the Wnt gene diversity in the crustacean Daphnia pulex, the chelicerates Ixodes scapularis and Achaearanea tepidariorum, the myriapod Glomeris marginata and the annelid Platynereis dumerilii. We also characterised Wnt gene expression in the latter three species, and further investigated expression of these genes in the beetle Tribolium castaneum. Results: We found that Daphnia and Platynereis both contain twelve Wnt subfamilies demonstrating that the common ancestors of arthropods, ecdysozoans and protostomes possessed all members of all Wnt subfamilies except Wnt3. Furthermore, although there is striking loss of Wnt genes in insects, other arthropods have maintained greater Wnt gene diversity. The expression of many Wnt genes overlap in segmentally reiterated patterns and in the segment addition zone, and while these patterns can be relatively conserved among arthropods and the annelid, there have also been changes in the expression of some Wnt genes in the course of protostome evolution. Nevertheless, our results strongly support the parasegment as the primary segmental unit in arthropods, and suggest further similarities between segmental and parasegmental regulation by Wnt genes in annelids and arthropods respectively. Conclusions: Despite frequent losses of Wnt gene subfamilies in lineages such as insects, nematodes and leeches, most protostomes have probably maintained much of their ancestral repertoire of twelve Wnt genes. The maintenance of a large set of these ligands could be in part due to their combinatorial activity in various tissues.
  •  
65.
  • Jones, Eleanor P., et al. (författare)
  • Fellow travellers : a concordance of colonization patterns between mice and men in the North Atlantic region
  • 2012
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 12, s. 35-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: House mice (Mus musculus) are commensals of humans and therefore their phylogeography can reflect human colonization and settlement patterns. Previous studies have linked the distribution of house mouse mitochondrial (mt) DNA clades to areas formerly occupied by the Norwegian Vikings in Norway and the British Isles. Norwegian Viking activity also extended further westwards in the North Atlantic with the settlement of Iceland, short-lived colonies in Greenland and a fleeting colony in Newfoundland in 1000 AD. Here we investigate whether house mouse mtDNA sequences reflect human history in these other regions as well. Results: House mice samples from Iceland, whether from archaeological Viking Age material or from modern-day specimens, had an identical mtDNA haplotype to the clade previously linked with Norwegian Vikings. From mtDNA and microsatellite data, the modern-day Icelandic mice also share the low genetic diversity shown by their human hosts on Iceland. Viking Age mice from Greenland had an mtDNA haplotype deriving from the Icelandic haplotype, but the modern-day Greenlandic mice belong to an entirely different mtDNA clade. We found no genetic association between modern Newfoundland mice and the Icelandic/ancient Greenlandic mice (no ancient Newfoundland mice were available). The modern day Icelandic and Newfoundland mice belong to the subspecies M. m. domesticus, the Greenlandic mice to M. m. musculus. Conclusions: In the North Atlantic region, human settlement history over a thousand years is reflected remarkably by the mtDNA phylogeny of house mice. In Iceland, the mtDNA data show the arrival and continuity of the house mouse population to the present day, while in Greenland the data suggest the arrival, subsequent extinction and recolonization of house mice - in both places mirroring the history of the European human host populations. If house mice arrived in Newfoundland with the Viking settlers at all, then, like the humans, their presence was also fleeting and left no genetic trace. The continuity of mtDNA haplotype in Iceland over 1000 years illustrates that mtDNA can retain the signature of the ancestral house mouse founders. We also show that, in terms of genetic variability, house mouse populations may also track their host human populations.
  •  
66.
  • Jones, M. E. H., et al. (författare)
  • Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)
  • 2013
  • Ingår i: Bmc Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 13:208
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e. g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. Results: Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). Conclusion: A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
  •  
67.
  • Kodandaramaiah, Ullasa, et al. (författare)
  • Phylogenetics and biogeography of a spectacular Old World radiation of grass feeding butterflies: the subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrini)
  • 2010
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 10, s. 172-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group. Results: The results indicate that the group Mycalesina radiated rapidly around the Oligocene-Miocene boundary. Basal relationships are unresolved, but we recover six well-supported clades. Some species of Mycalesis are nested within a primarily Madagascan clade of Heteropsis, while Nirvanopsis is nested within Lohora. The phylogeny suggests that the group had its origin either in Asia or Africa, and diversified through dispersals between the two regions, during the late Oligocene and early Miocene. The current dataset tentatively suggests that the Madagascan fauna comprises two independent radiations. The Australasian radiation shares a common ancestor derived from Asia. We discuss factors that are likely to have played a key role in the diversification of the group. Conclusions: We propose a significantly revised classification scheme for Mycalesina. We conclude that the group originated and radiated from an ancestor that was found either in Asia or Africa, with dispersals between the two regions and to Australasia. Our phylogeny paves the way for further comparative studies on this group that will help us understand the processes underlying diversification in rapid radiations of invertebrates.
  •  
68.
  • Kraus, Robert, et al. (författare)
  • Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks
  • 2012
  • Ingår i: BMC Evolutionary Biology. - : BioMed Central Ltd.. - 1471-2148. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:The study of speciation and maintenance of species barriers is at the core of evolutionary biology. During speciation the genome of one population becomes separated from other populations of the same species, which may lead to genomic incompatibility with time. This separation is complete when no fertile offspring is produced from inter-population matings, which is the basis of the biological species concept. Birds, in particular ducks, are recognised as a challenging and illustrative group of higher vertebrates for speciation studies. There are many sympatric and ecologically similar duck species, among which fertile hybrids occur relatively frequently in nature, yet these species remain distinct.RESULTS:We show that the degree of shared single nucleotide polymorphisms (SNPs) between five species of dabbling ducks (genus Anas) is an order of magnitude higher than that previously reported between any pair of eukaryotic species with comparable evolutionary distances. We demonstrate that hybridisation has led to sustained exchange of genetic material between duck species on an evolutionary time scale without disintegrating species boundaries. Even though behavioural, genetic and ecological factors uphold species boundaries in ducks, we detect opposing forces allowing for viable interspecific hybrids, with long-term evolutionary implications. Based on the superspecies concept we here introduce the novel term "supra-population" to explain the persistence of SNPs identical by descent within the studied ducks despite their history as distinct species dating back millions of years.CONCLUSIONS:By reviewing evidence from speciation theory, palaeogeography and palaeontology we propose a fundamentally new model of speciation to accommodate our genetic findings in dabbling ducks. This model, we argue, may also shed light on longstanding unresolved general speciation and hybridisation patterns in higher organisms, e.g. in other bird groups with unusually high hybridisation rates. Observed parallels to horizontal gene transfer in bacteria facilitate the understanding of why ducks have been such an evolutionarily successful group of animals. There is large evolutionary potential in the ability to exchange genes among species and the resulting dramatic increase of effective population size to counter selective constraints.
  •  
69.
  • Lagman, David, et al. (författare)
  • The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications
  • 2013
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 13, s. 238-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Results: Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. Conclusions: We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.
  •  
70.
  • Larsson, John, et al. (författare)
  • Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits
  • 2011
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 11, s. 187-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cyanobacteria belong to an ancient group of photosynthetic prokaryotes with pronounced variations in their cellular differentiation strategies, physiological capacities and choice of habitat. Sequencing efforts have shown that genomes within this phylum are equally diverse in terms of size and protein-coding capacity. To increase our understanding of genomic changes in the lineage, the genomes of 58 contemporary cyanobacteria were analysed for shared and unique orthologs. Results: A total of 404 protein families, present in all cyanobacterial genomes, were identified. Two of these are unique to the phylum, corresponding to an AbrB family transcriptional regulator and a gene that escapes functional annotation although its genomic neighbourhood is conserved among the organisms examined. The evolution of cyanobacterial genome sizes involves a mix of gains and losses in the clade encompassing complex cyanobacteria, while a single event of reduction is evident in a clade dominated by unicellular cyanobacteria. Genome sizes and gene family copy numbers evolve at a higher rate in the former clade, and multi-copy genes were predominant in large genomes. Orthologs unique to cyanobacteria exhibiting specific characteristics, such as filament formation, heterocyst differentiation, diazotrophy and symbiotic competence, were also identified. An ancestral character reconstruction suggests that the most recent common ancestor of cyanobacteria had a genome size of approx. 4.5 Mbp and 1678 to 3291 protein-coding genes, 4%-6% of which are unique to cyanobacteria today. Conclusions: The different rates of genome-size evolution and multi-copy gene abundance suggest two routes of genome development in the history of cyanobacteria. The expansion strategy is driven by gene-family enlargment and generates a broad adaptive potential; while the genome streamlining strategy imposes adaptations to highly specific niches, also reflected in their different functional capacities. A few genomes display extreme proliferation of non-coding nucleotides which is likely to be the result of initial expansion of genomes/gene copy number to gain adaptive potential, followed by a shift to a life-style in a highly specific niche (e. g. symbiosis). This transition results in redundancy of genes and gene families, leading to an increase in junk DNA and eventually to gene loss. A few orthologs can be correlated with specific phenotypes in cyanobacteria, such as filament formation and symbiotic competence; these constitute exciting exploratory targets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 203
Typ av publikation
tidskriftsartikel (200)
annan publikation (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (199)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ericson, Per G P, 19 ... (7)
Wahlberg, Niklas (6)
Irestedt, Martin (6)
Hansson, Bengt (5)
Schiöth, Helgi B. (5)
Fredriksson, Robert (5)
visa fler...
Larhammar, Dan (5)
Oxelman, Bengt, 1958 (5)
Pauliny, Angela, 197 ... (4)
Nylin, Sören (4)
Malmström, Helena (4)
Alström, Per (4)
Arnqvist, Göran (4)
Karlsson, Magnus (3)
Olsson, Urban, 1954 (3)
Erséus, Christer, 19 ... (3)
Blomqvist, Donald, 1 ... (3)
Janz, Niklas (3)
Gustafsson, Lars (3)
Storå, Jan (3)
Wheat, Christopher W ... (3)
Baldauf, Sandra L. (3)
Laurila, Anssi (3)
Holmlund, Gunilla (3)
Fjeldså, Jon (3)
Ödeens, Anders (3)
Budd, Graham E. (3)
Berger, David (2)
Antonelli, Alexandre ... (2)
Larsson, Tomas (2)
Taylor, Douglas R (2)
Blomberg, Anders, 19 ... (2)
Lees, David C. (2)
Kodandaramaiah, Ulla ... (2)
Zhang, Zhifei (2)
Lundin, Daniel, 1965 ... (2)
Atkinson, Gemma C (2)
Hauryliuk, Vasili (2)
Maklakov, Alexei A. (2)
Bergman, Birgitta (2)
Dircksen, Heinrich, ... (2)
Merilä, Juha (2)
Willerslev, Eske (2)
Almén, Markus Sällma ... (2)
Nordström, Karl J V (2)
Dekker, Teun (2)
Lascoux, Martin (2)
Jakobsson, Mattias (2)
Kolm, Niclas (2)
Dalen, Love (2)
visa färre...
Lärosäte
Uppsala universitet (98)
Göteborgs universitet (33)
Stockholms universitet (28)
Lunds universitet (21)
Sveriges Lantbruksuniversitet (19)
Naturhistoriska riksmuseet (13)
visa fler...
Umeå universitet (8)
Linnéuniversitetet (7)
Kungliga Tekniska Högskolan (6)
Linköpings universitet (5)
Karolinska Institutet (5)
Chalmers tekniska högskola (4)
Högskolan Kristianstad (2)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (202)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (175)
Medicin och hälsovetenskap (8)
Lantbruksvetenskap (3)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy