SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1538 4357 OR L773:0004 637X "

Sökning: L773:1538 4357 OR L773:0004 637X

  • Resultat 21-30 av 1702
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Abbasi, R., et al. (författare)
  • Search for High-energy Neutrinos from Ultraluminous Infrared Galaxies with IceCube
  • 2022
  • Ingår i: Astrophysical Journal. - : IOP Publishing Ltd. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultraluminous infrared galaxies (ULIRGs) have infrared luminosities L-IR >= 10(12) L-circle dot, making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star formation rates that exceed 100M(circle dot) yr(-1), possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift z <= 0.13 using 7.5 yr of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken E-2.5 power-law spectrum, we report an upper limit on the stacked flux Phi(90%)(nu mu+(nu) over bar mu) = 3.24 x 10(-14) TeV-1 cm(-2) S-1 (E/10 TeV)(-2.5) at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.
  •  
22.
  • Abe, K., et al. (författare)
  • Supernova Model Discrimination with Hyper-Kamiokande
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 916:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants-neutron stars and black holes-are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood. Hyper-Kamiokande is a next-generation neutrino detector that will be able to observe the neutrino flux from the next galactic core-collapse supernova in unprecedented detail. We focus on the first 500 ms of the neutrino burst, corresponding to the accretion phase, and use a newly-developed, high-precision supernova event generator to simulate Hyper-Kamiokande's response to five different supernova models. We show that Hyper-Kamiokande will be able to distinguish between these models with high accuracy for a supernova at a distance of up to 100 kpc. Once the next galactic supernova happens, this ability will be a powerful tool for guiding simulations toward a precise reproduction of the explosion mechanism observed in nature.
  •  
23.
  • Ahrens, Maryon, et al. (författare)
  • ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 892:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for point-like and extended sources of cosmic neutrinos using data collected by the ANTARES and IceCube neutrino telescopes is presented. The data set consists of all the track-like and shower-like events pointing in the direction of the Southern Sky included in the nine-year ANTARES point-source analysis, combined with the throughgoing track-like events used in the seven-year IceCube point-source search. The advantageous field of view of ANTARES and the large size of IceCube are exploited to improve the sensitivity in the Southern Sky by a factor of similar to 2 compared to both individual analyses. In this work, the Southern Sky is scanned for possible excesses of spatial clustering, and the positions of preselected candidate sources are investigated. In addition, special focus is given to the region around the Galactic Center, whereby a dedicated search at the location of SgrA* is performed, and to the location of the supernova remnant RXJ 1713.7-3946. No significant evidence for cosmic neutrino sources is found, and upper limits on the flux from the various searches are presented.
  •  
24.
  • Ahrens, Maryon, et al. (författare)
  • Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 886:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-background searches for astrophysical neutrino sources anywhere in the sky can be performed using cascade events induced by neutrinos of all flavors interacting in IceCube with energies as low as similar to 1 TeV. Previously we showed that, even with just two years of data, the resulting sensitivity to sources in the southern sky is competitive with IceCube and ANTARES analyses using muon tracks induced by charge current muon neutrino interactions-especially if the neutrino emission follows a soft energy spectrum or originates from an extended angular region. Here, we extend that work by adding five more years of data, significantly improving the cascade angular resolution, and including tests for point-like or diffuse Galactic emission to which this data set is particularly well suited. For many of the signal candidates considered, this analysis is the most sensitive of any experiment to date. No significant clustering was observed, and thus many of the resulting constraints are the most stringent to date. In this paper we will describe the improvements introduced in this analysis and discuss our results in the context of other recent work in neutrino astronomy.
  •  
25.
  • Kim, Ji Hoon, et al. (författare)
  • THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST
  • 2016
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 833:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.
  •  
26.
  • Aguichine, Artyom, et al. (författare)
  • Rocklines as cradles for refractory solids in the protosolar nebula
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 901:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In our solar system, terrestrial planets and meteoritical matter exhibit various bulk compositions. To understand this variety of compositions, formation mechanisms of meteorites are usually investigated via a thermodynamic approach that neglects the processes of transport throughout the protosolar nebula. Here, we investigate the role played by rocklines (condensation/sublimation lines of refractory materials) in the innermost regions of the protosolar nebula to compute the composition of particles migrating inward toward the disk as a function of time. To do so, we utilize a one-dimensional accretion disk model with a prescription for dust and vapor transport, sublimation, and recondensation of refractory materials (ferrosilite, enstatite, fayalite, forsterite, iron sulfide, metal iron, and nickel). We find that the diversity of the bulk composition of cosmic spherules, chondrules, and chondrites can be explained by their formation close to rocklines, suggesting that solid matter is concentrated in the vicinity of these sublimation/condensation fronts. Although our model relies a lot on the number of considered species and the availability of thermodynamic data governing state changes, it suggests that rocklines played a major role in the formation of small and large bodies in the innermost regions of the protosolar nebula. Our model gives insights on the mechanisms that might have contributed to the formation of Mercury's large core.
  •  
27.
  • Arabsalmani, M., et al. (författare)
  • A Superluminous Supernova in High Surface Density Molecular Gas within the Bar of a Metal-rich Galaxy
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 882:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the Atacama Large Millimeter/submillimeter Array observations of the metal-rich host galaxy of superluminous supernova (SLSN) PTF10tpz, a barred spiral galaxy at z = 0.03994. We find the CO(1-0) emission to be confined within the bar of the galaxy. The distribution and kinematics of molecular gas in the host galaxy resemble gas flows along two lanes running from the tips of the bar toward the galaxy center. These gas lanes end in a gaseous structure in the inner region of the galaxy, likely associated with an inner Lindblad resonance. The interaction between the large-scale gas flows in the bar and the gas in the inner region plausibly leads to the formation of massive molecular clouds and consequently massive clusters. This in turn can result in formation of massive stars, and thus the likely progenitor of the SLSN in a young, massive cluster. This picture is consistent with SLSN PTF10tpz being located near the intersection regions of the gas lanes and the inner structure. It is also supported by the high molecular gas surface densities that we find in the vicinity of the SLSN, surface densities that are comparable with those in interacting galaxies or starburst regions in nearby galaxies. Our findings therefore suggest in situ formation of massive stars due to the internal dynamics of the host galaxy and also lend support to high densities being favorable conditions for formation of SLSN progenitors.
  •  
28.
  • Bergemann, Maria, et al. (författare)
  • Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and 〈3〉 Models. I. Methods and Application to Magnesium Abundances in Standard Stars
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 847:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We determine Mg abundances in six Gaia benchmark stars using theoretical one-dimensional (1D) hydrostatic model atmospheres, as well as temporally and spatially averaged three-dimensional (〈3D〉) model atmospheres. The stars cover a range of Teff from 4700 to 6500 K, log g from 1.6 to 4.4 dex, and [Fe H] from -3.0 dex to solar. Spectrum synthesis calculations are performed in local thermodynamic equilibrium (LTE) and in non-LTE (NLTE) using the oscillator strengths recently published by Pehlivan Rhodin et al. We find that: (a) Mg abundances determined from the infrared spectra are as accurate as the optical diagnostics, (b) the NLTE effects on Mg I line strengths and abundances in this sample of stars are minor (although for a few Mg I lines the NLTE effects on abundance exceed 0.6 dex in 〈3D〉 and 0.1 dex in 1D, (c) the solar Mg abundance is 7.56 ± 0.05 dex (total error), in excellent agreement with the Mg abundance measured in CI chondritic meteorites, (d) the 1D NLTE and 〈3D〉 NLTE approaches can be used with confidence to analyze optical Mg I lines in spectra of dwarfs and sub-giants, but for red giants the Mg I 5711 line should be preferred, (e) low-excitation Mg I lines are sensitive to the atmospheric structure; for these lines, LTE calculations with 〈3D〉 models lead to significant systematic abundance errors. The methods developed in this work will be used to study Mg abundances of a large sample of stars in the next paper in the series.
  •  
29.
  • Buchhave, Lars A., et al. (författare)
  • Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 856:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet-planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical simulations, which indicate that metal-rich stars typically form multiple Jupiters, leading to planet-planet interactions and, hence, a prevalence of either eccentric cool Jupiters or hot Jupiters with circularized orbits. Although the samples are small and exhibit variations in their metallicities, suggesting that numerous processes other than metallicity affect the formation of planetary systems, the data in hand suggests that Jupiter analogs and terrestrial-sized planets form around stars with average metallicities close to solar, whereas high-metallicity systems preferentially host eccentric cool Jupiter or hot Jupiters, indicating that higher metallicity systems may not be favorable for the formation of planetary systems akin to the Solar System.
  •  
30.
  • Carrera, Daniel, et al. (författare)
  • Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 839:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60-130 M ⊕) planetesimal belts beyond 100 au and up to ∼20 M ⊕ of planetesimals in the middle regions (3-100 au). Our most comprehensive model forms 8 M ⊕ of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet-forming regions of protoplanetary disks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 1702
Typ av publikation
tidskriftsartikel (1693)
forskningsöversikt (9)
Typ av innehåll
refereegranskat (1690)
populärvet., debatt m.m. (8)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ackermann, M. (148)
Reimer, O. (117)
Reimer, A. (113)
Johannesson, G. (110)
Longo, F. (109)
Ajello, M. (108)
visa fler...
Guiriec, S. (107)
Ciprini, S. (106)
Giglietto, N. (106)
Bellazzini, R. (105)
Morselli, A. (105)
Bastieri, D. (105)
Kuss, M. (105)
Sgrò, C. (105)
Barbiellini, G. (104)
Fusco, P. (104)
Loparco, F. (104)
Mazziotta, M. N. (104)
Piron, F. (104)
Raino, S. (104)
Spinelli, P. (104)
Bregeon, J. (103)
Cameron, R. A. (103)
Giordano, F. (103)
Lubrano, P. (103)
Nuss, E. (103)
Orlando, E. (103)
Bruel, P. (102)
Gargano, F. (102)
Mizuno, T. (102)
Pesce-Rollins, M. (102)
Baldini, L. (101)
Moskalenko, I. V. (101)
de Palma, F. (100)
Razzano, M. (100)
Johnson, A. S. (100)
Torres, D. F. (99)
Michelson, P. F. (99)
Fukazawa, Y. (99)
Cohen-Tanugi, J. (98)
Favuzzi, C. (98)
Spandre, G. (98)
Grenier, I. A. (97)
Monzani, M. E. (96)
Rando, R. (96)
Caraveo, P. A. (95)
Porter, T. A. (95)
Thayer, J. B. (95)
Paneque, D. (94)
Lovellette, M. N. (94)
visa färre...
Lärosäte
Stockholms universitet (891)
Kungliga Tekniska Högskolan (331)
Chalmers tekniska högskola (276)
Uppsala universitet (260)
Lunds universitet (150)
Linnéuniversitetet (64)
visa fler...
Malmö universitet (34)
Göteborgs universitet (15)
Umeå universitet (12)
Högskolan i Halmstad (6)
Linköpings universitet (6)
Högskolan Dalarna (5)
Luleå tekniska universitet (3)
Mittuniversitetet (2)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (1696)
Odefinierat språk (5)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1581)
Teknik (22)
Samhällsvetenskap (3)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy