SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1559 1182 "

Sökning: L773:1559 1182

  • Resultat 51-60 av 98
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Michalettos, Georgios, et al. (författare)
  • Effect of Anti-inflammatory Treatment with AMD3100 and CX3CR1 Deficiency on GABAA Receptor Subunit and Expression of Glutamate Decarboxylase Isoforms After Stroke
  • 2021
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 58:11, s. 5876-5889
  • Tidskriftsartikel (refereegranskat)abstract
    • Following stroke, attenuation of detrimental inflammatory pathways might be a promising strategy to improve long-term outcome. In particular, cascades driven by pro-inflammatory chemokines interact with neurotransmitter systems such as the GABAergic system. This crosstalk might be of relevance for mechanisms of neuronal plasticity, however, detailed studies are lacking. The purpose of this study was to determine if treatment with 1,1′-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and partial allosteric agonist to CXCR7 (AMD3100) alone or in combination with C-X3-C chemokine receptor type 1 (CX3CR1) deficiency, affect the expression of GABAA subunits and glutamate decarboxylase (GAD) isoforms. Heterozygous, CX3CR1-deficient mice and wild-type littermates were subjected to photothrombosis (PT). Treatment with AMD3100 (0.5 mg/kg twice daily i.p.) was administered starting from day 2 after induction of PT until day 14 after the insult. At this time point, GABAA receptor subunits (α3, β3, δ), GAD65 and GAD67, and CXCR4 were analyzed from the peri-infarct tissue and homotypic brain regions of the contralateral hemisphere by quantitative real-time PCR and Western Blot. Fourteen days after PT, CX3CR1 deficiency resulted in a significant decrease of the three GABAA receptor subunits in both the lesioned and the contralateral hemisphere compared to sham-operated mice. Treatment with AMD3100 promoted the down-regulation of GABAA subunits and GAD67 in the ipsilateral peri-infarct area, while the β3 subunit and the GAD isoforms were up-regulated in homotypic regions of the contralateral cortex. Changes in GABAA receptor subunits and GABA synthesis suggest that the CXCR4/7 and CX3CR1 signaling pathways are involved in the regulation of GABAergic neurotransmission in the post-ischemic brain.
  •  
52.
  •  
53.
  •  
54.
  • Muresanu, Dafin F., et al. (författare)
  • Nanowired Delivery of Growth Hormone Attenuates Pathophysiology of Spinal Cord Injury and Enhances Insulin-Like Growth Factor-1 Concentration in the Plasma and the Spinal Cord
  • 2015
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 52:2, s. 837-845
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies from our laboratory showed that topical application of growth hormone (GH) induced neuroprotection 5 h after spinal cord injury (SCI) in a rat model. Since nanodelivery of drugs exerts superior neuroprotective effects, a possibility exists that nanodelivery of GH will induce long-term neuroprotection after a focal SCI. SCI induces GH deficiency that is coupled with insulin-like growth factor-1 (IGF-1) reduction in the plasma. Thus, an exogenous supplement of GH in SCI may enhance the IGF-1 levels in the cord and induce neuroprotection. In the present investigation, we delivered TiO2-nanowired growth hormone (NWGH) after a longitudinal incision of the right dorsal horn at the T10-11 segments in anesthetized rats and compared the results with normal GH therapy on IGF-1 and GH contents in the plasma and in the cord in relation to blood-spinal cord barrier (BSCB) disruption, edema formation, and neuronal injuries. Our results showed a progressive decline in IGF-1 and GH contents in the plasma and the T9 and T12 segments of the cord 12 and 24 h after SCI. Marked increase in the BSCB breakdown, as revealed by extravasation of Evans blue and radioiodine, was seen at these time points after SCI in association with edema and neuronal injuries. Administration of NWGH markedly enhanced the IGF-1 levels and GH contents in plasma and cord after SCI, whereas normal GH was unable to enhance IGF-1 or GH levels 12 or 24 h after SCI. Interestingly, NWGH was also able to reduce BSCB disruption, edema formation, and neuronal injuries after trauma. On the other hand, normal GH was ineffective on these parameters at all time points examined. Taken together, our results are the first to demonstrate that NWGH is quite effective in enhancing IGF-1 and GH levels in the cord and plasma that may be crucial in reducing pathophysiology of SCI.
  •  
55.
  • Niss, Frida, et al. (författare)
  • Key Modulators of the Stress Granule Response TIA1, TDP-43, and G3BP1 are Altered by Polyglutamine Expanded ATXN7
  • 2022
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 59:8, s. 5236-5251
  • Tidskriftsartikel (refereegranskat)abstract
    • Spinocerebellar ataxia type 7 (SCA7) and other polyglutamine (polyQ) diseases are caused by expansions of polyQ repeats in disease-specific proteins. Aggregation of the polyQ proteins resulting in various forms of cellular stress, that could induce the stress granule (SG) response, is believed to be a common pathological mechanism in these disorders. SGs can contribute to cell survival but have also been suggested to exacerbate disease pathology by seeding protein aggregation. In this study, we show that two SG-related proteins, TDP-43 and TIA1, are sequestered into the aggregates formed by polyQ-expanded ATXN7 in SCA7 cells. Interestingly, mutant ATXN7 also localises to induced SGs, and this association altered the shape of the SGs. In spite of this, neither the ability to induce nor to disassemble SGs, in response to arsenite stress induction or relief, was affected in SCA7 cells. Moreover, we could not observe any change in the number of ATXN7 aggregates per cell following SG induction, although a small, non-significant, increase in total aggregated ATXN7 material could be detected using filter trap. However, mutant ATXN7 expression in itself increased the speckling of the SG-nucleating protein G3BP1 and the SG response. Taken together, our results indicate that the SG response is induced, and although some key modulators of SGs show altered behaviour, the dynamics of SGs appear normal in the presence of mutant ATXN7. 
  •  
56.
  • Nylander, Ingrid, 1957-, et al. (författare)
  • Evidence for a Link Between Fkbp5/FKBP5, Early Life Social Relations and Alcohol Drinking in Young Adult Rats and Humans
  • 2017
  • Ingår i: Molecular Neurobiology. - : Humana Press. - 0893-7648 .- 1559-1182. ; 54:8, s. 6225-6234
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol misuse has been linked to dysregulation of stress, emotion, and reward brain circuitries. A candidate key mediator of this association is the FK506-binding protein (FKBP5), a negative regulator of the glucocorticoid receptor. The aim of the present study was to further understand the Fkbp5/FKBP5-related genetic underpinnings underlying the relationship between early life social relations and alcohol drinking. The effect of maternal separation and voluntary alcohol drinking on Fkbp5 expression was investigated in the brain of young adult rats, whereas the interaction effect of the functional FKBP5 single nucleotide polymorphism rs1360780 genotype and parent-child relationship on problematic drinking was examined in young adult humans. In rats, Fkbp5 expression in the nucleus accumbens and ventral tegmental area, core regions of the reward system, was affected in a region-dependent manner and in opposite direction by maternal separation and alcohol drinking. Fkbp5 expression in the cingulate cortex was affected by the combined effect of maternal separation and alcohol drinking. In humans, the TT genotype, in the presence of a poor relationship between the child and parents, was associated with problematic drinking behavior. The present findings suggest that Fkbp5 expression in mesocorticolimbic dopaminergic regions associates with early life stress-mediated sensitivity to alcohol drinking and that FKBP5 genotype interacts with parent-child relationship to influence alcohol drinking. These findings are the first to point to a role of FKBP5 in propensity to alcohol misuse and call for studies of the underlying molecular mechanisms to identify potential drug targets.
  •  
57.
  • Ozkizilcik, Asya, et al. (författare)
  • Timed Release of Cerebrolysin Using Drug-Loaded Titanate Nanospheres Reduces Brain Pathology and Improves Behavioral Functions in Parkinson's Disease
  • 2018
  • Ingår i: Molecular Neurobiology. - : HUMANA PRESS INC. - 0893-7648 .- 1559-1182. ; 55:1, s. 359-369
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies from our laboratory show that intraperitoneal injections of 1-metyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP, 20 mg/kg) daily within 2-h intervals for 5 days in mice induce Parkinson's disease (PD)-like symptoms on the 8th day. A significant decrease in dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) along with a marked decrease in the number of tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta (SNpc) and striatum (STr) confirms the validity of this model for studying PD. Since cerebrolysin (CBL) is a well-balanced composition of several neurotrophic factors and active peptide fragments, in the present investigation we examined the timed release of CBL using titanate nanospheres (TiNS) in treating PD in our mouse model. Our observations show that TiNS-CBL (in a dose of 3 ml/kg, i.v.) given after 2 days of MPTP administration for 5 days resulted in a marked increase in TH-positive cells in the SNpc and STr as compared to normal CBL. Also, TiNS-CBL resulted in significantly higher levels of DA, DOPAC, and HVA in SNpc and STr on the 8th day as compared to normal CBL therapy. TiNS-CBL also thwarted increased alpha-synuclein levels in the brain and in the cerebrospinal fluid (CSF) as well as neuronal nitric oxide synthase (nNOS) in the in PD brain as compared to untreated group. Behavioral function was also significantly improved in MPTP-treated animals that received TiNS-CBL. These observations are the first to demonstrate that timed release of TiNS-CBL has far more superior neuroprotective effects in PD than normal CBL.
  •  
58.
  • Pablo Muñoz-Cobo, Juan, et al. (författare)
  • Transcriptional Elongation Regulator 1 Affects Transcription and Splicing of Genes Associated with Cellular Morphology and Cytoskeleton Dynamics and Is Required for Neurite Outgrowth in Neuroblastoma Cells and Primary Neuronal Cultures
  • 2017
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 54:10, s. 7808-7823
  • Tidskriftsartikel (refereegranskat)abstract
    • TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown. Here, we show that TCERG1 depletion led to widespread alterations in mRNA processing that affected different types of alternative transcriptional or splicing events, indicating that TCERG1 plays a broad role in the regulation of alternative splicing. We observed considerable changes in the transcription and alternative splicing patterns of genes involved in cytoskeleton dynamics and neurite outgrowth. Accordingly, TCERG1 depletion in the neuroblastoma SH-SY5Y cell line and primary mouse neurons affected morphogenesis and resulted in reduced dendritic outgrowth, with a major effect on dendrite ramification and branching complexity. These defects could be rescued by ectopic expression of TCERG1. Our results indicate that TCERG1 affects expression of multiple mRNAs involved in neuron projection development, whose misregulation may be involved in TCERG1-linked neurological disorders.
  •  
59.
  •  
60.
  • Patnaik, Ranjana, et al. (författare)
  • Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer's Disease
  • 2018
  • Ingår i: Molecular Neurobiology. - : Humana Press. - 0893-7648 .- 1559-1182. ; 55:1, s. 312-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is one of the leading causes for disability and death affecting millions of people worldwide. Thus, novel therapeutic strategies are needed to reduce brain pathology associated with AD. In view of increasing awareness regarding involvement of histaminergic pathways in AD, we explored the role of one H3 receptor inverse agonist BF 2649 and one selective H3 receptor antagonist with partial H4 agonist activity in amyloid beta peptide (A beta P) infusion-induced brain pathology in a rat model. AD-like pathology was produced by administering A beta P (1-40) intracerebroventricular (i.c.v.) in the left lateral ventricle (250 ng/10 mu l, once daily) for 4 weeks. Control rats received saline. In separate group of rats, either BF 2649 (1 mg/kg, i.p.) or clobenpropit (1 mg/kg, i.p.) was administered once daily for 1 week after 3weeks of A beta P administration. After 30 days, blood-brain barrier (BBB) breakdown, edema formation, neuronal, glial injuries, and A beta P deposits were examined in the brain. A significant reduction in A beta P deposits along with marked reduction in neuronal or glial reactions was seen in the drug-treated group. The BBB breakdown to Evans blue albumin and radioiodine in the cortex, hippocampus, hypothalamus, and cerebellum was also significantly reduced in these drug-treated groups. Clobenpropit showed superior effects than the BF2649 in reducing brain pathology in AD. Taken together, our observations are the first to show that blockade of H3 and stimulation of H4 receptors are beneficial for the treatment of AD pathology, not reported earlier.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 98
Typ av publikation
tidskriftsartikel (94)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (96)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Sharma, Aruna (15)
Sharma, Hari Shanker (9)
Bazan, NG (8)
Sharma, Hari S. (6)
Blennow, Kaj, 1958 (4)
Winblad, B (4)
visa fler...
Zhu, Changlian, 1964 (4)
Boylan, GB (3)
Murray, DM (3)
Hallberg, B (3)
Wieloch, Tadeusz (3)
Behbahani, H (3)
Fuxe, Kjell (3)
Borroto-Escuela, Das ... (3)
Ruscher, Karsten (3)
Chen, Y. (2)
Zhu, J. (2)
Zetterberg, Henrik, ... (2)
Landén, Mikael, 1966 (2)
Bjorkhem, I (2)
Schiöth, Helgi B. (2)
Cichon, S (2)
Muller-Myhsok, B (2)
Nothen, MM (2)
Rietschel, M (2)
Martin, NG (2)
Ahearne, CE (2)
Forssberg, H (2)
Samuelsson, EB (2)
Cedazo-Minguez, A (2)
Wang, Xiaoyang, 1965 (2)
Carlsson, Jens (2)
Leboyer, M. (2)
Pekna, Marcela, 1966 (2)
Pekny, Milos, 1965 (2)
Wiklund, Lars (2)
Lukiw, WJ (2)
Heijtz, RD (2)
Qian, Y (2)
Blomgren, K (2)
Li, Tao (2)
Larsson, SC (2)
Bazan, N (2)
Wydra, Karolina (2)
Romero Fernandez, Wi ... (2)
Filip, Malgorzata (2)
Narváez, Manuel (2)
Mateos, L (2)
Looney, AM (2)
Castellani, Rudy J. (2)
visa färre...
Lärosäte
Karolinska Institutet (57)
Uppsala universitet (26)
Göteborgs universitet (18)
Lunds universitet (7)
Stockholms universitet (4)
Linköpings universitet (3)
visa fler...
Örebro universitet (2)
Kungliga Tekniska Högskolan (1)
Mälardalens universitet (1)
visa färre...
Språk
Engelska (98)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (49)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy