SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1680 7316 "

Sökning: L773:1680 7316

  • Resultat 301-310 av 595
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
301.
  • Loewe, Katharina, et al. (författare)
  • Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS)
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:11, s. 6693-6704
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs) to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS) field campaign, was a low cloud droplet number concentration (CDNC) of about 2 cm(-3). Introducing a high ice crystal concentration of 10 L-1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L-1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.
  •  
302.
  • Lohmann, U., et al. (författare)
  • Total aerosol effect : radiative forcing or radiative flux perturbation?
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:7, s. 3235-3246
  • Tidskriftsartikel (refereegranskat)abstract
    • Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of precipitation formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to define properly. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models.
  •  
303.
  • Lossow, Stefan, et al. (författare)
  • Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign
  • 2009
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 9, s. 4407-4417
  • Tidskriftsartikel (refereegranskat)abstract
    • The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E) with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.
  •  
304.
  • Lossow, Stefan, et al. (författare)
  • Observations of the mesospheric semi-annual oscillation (MSAO) in water vapour by Odin/SMR
  • 2008
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 6527-6540
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesospheric water vapour measurements taken by the SMR instrument aboard the Odin satellite between 2002 and 2006 have been analysed with focus on the mesospheric semi-annual circulation in the tropical and subtropical region. This analysis provides the first complete picture of mesospheric SAO in water vapour, covering altitudes above 80 km where previous studies were limited. Our analysis shows a clear semi-annual variation in the water vapour distribution in the entire altitude range between 65 km and 100 km in the equatorial area. Maxima occur near the equinoxes below 75 km and around the solstices above 80 km. The phase reversal occurs in the small layer in-between, consistent with the downward propagation of the mesospheric SAO in the zonal wind in this altitude range. The SAO amplitude exhibits a double peak structure in the equatorial region, with maxima at about 75 km and 81 km. The observed amplitudes show higher values than an earlier analysis based on UARS/HALOE data. The upper peak amplitude remains relatively constant with latitude. The lower peak amplitude decreases towards higher latitudes, but recovers in the Southern Hemisphere subtropics. On the other hand, the annual variation is much more prominent in the Northern Hemisphere subtropics. Furthermore, higher volume mixing ratios during summer and lower values during winter are observed in the Northern Hemisphere subtropics, as compared to the corresponding latitude range in the Southern Hemisphere.
  •  
305.
  • Lowe, Samuel, et al. (författare)
  • Inverse modelling of Kohler theory - Part 1 : A response surface analysis of CCN spectra with respect to surface-active organic species
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:17, s. 10941-10963
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study a novel framework for inverse modelling of cloud condensation nuclei (CCN) spectra is developed using Kohler theory. The framework is established by using model-generated synthetic measurements as calibration data for a parametric sensitivity analysis. Assessment of the relative importance of aerosol physicochemical parameters, while accounting for bulk-surface partitioning of surface-active organic species, is carried out over a range of atmospherically relevant supersaturations. By introducing an objective function that provides a scalar metric for diagnosing the deviation of modelled CCN concentrations from synthetic observations, objective function response surfaces are presented as a function of model input parameters. Crucially, for the chosen calibration data, aerosol-CCN spectrum closure is confirmed as a well-posed inverse modelling exercise for a subset of the parameters explored herein. The response surface analysis indicates that the appointment of appropriate calibration data is particularly important. To perform an inverse aerosol-CCN closure analysis and constrain parametric uncertainties, it is shown that a high-resolution CCN spectrum definition of the calibration data is required where single-valued definitions may be expected to fail. Using Kohler theory to model CCN concentrations requires knowledge of many physicochemical parameters, some of which are difficult to measure in situ on the scale of interest and introduce a considerable amount of parametric uncertainty to model predictions. For all partitioning schemes and environments modelled, model output showed significant sensitivity to perturbations in aerosol log-normal parameters describing the accumulation mode, surface tension, organic : inorganic mass ratio, insoluble fraction, and solution ideality. Many response surfaces pertaining to these parameters contain well-defined minima and are therefore good candidates for calibration using a Monte Carlo Markov Chain (MCMC) approach to constraining parametric uncertainties. A complete treatment of bulk-surface partitioning is shown to predict CCN spectra similar to those calculated using classical Kohler theory with the surface tension of a pure water drop, as found in previous studies. In addition, model sensitivity to perturbations in the partitioning parameters was found to be negligible. As a result, this study supports previously held recommendations that complex surfactant effects might be neglected, and the continued use of classical Kohler theory in global climate models (GCMs) is recommended to avoid an additional computational burden. The framework developed is suitable for application to many additional composition-dependent processes that might impact CCN activation potential. However, the focus of this study is to demonstrate the efficacy of the applied sensitivity analysis to identify important parameters in those processes and will be extended to facilitate a global sensitivity analysis and inverse aerosol-CCN closure analysis.
  •  
306.
  • Lubis, Sandro W., et al. (författare)
  • How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:3, s. 2437-2458
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry-climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.
  •  
307.
  • Luo, Yuanyuan, et al. (författare)
  • Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis
  • 2024
  • Ingår i: ATMOSPHERIC CHEMISTRY AND PHYSICS. - 1680-7316 .- 1680-7324. ; 24:16, s. 9459-9473
  • Tidskriftsartikel (refereegranskat)abstract
    • Delta(3)-carene is a prominent monoterpene in the atmosphere, contributing significantly to secondary organic aerosol (SOA) formation. However, knowledge about Delta(3)-carene oxidation pathways, particularly regarding their ability to form highly oxygenated organic molecules (HOMs), is still limited. In this study, we present HOM measurements during Delta(3)-carene ozonolysis under various conditions in two simulation chambers. We identified numerous HOMs (monomers: C7-10H10-18O6-14; dimers: C17-20H24-34O6-18) using a chemical ionization mass spectrometer (CIMS). Delta(3)-carene ozonolysis yielded higher HOM concentrations than alpha-pinene, with a distinct distribution, indicating differences in formation pathways. All HOM signals decreased considerably at lower temperatures, reducing the estimated molar HOM yield from similar to 3 % at 20 degrees C to similar to 0.5 % at 0 degrees C. Interestingly, the temperature change altered the HOM distribution, increasing the observed dimer-to-monomer ratios from roughly 0.8 at 20 degrees C to 1.5 at 0 degrees C. HOM monomers with six or seven O atoms condensed more efficiently onto particles at colder temperatures, while monomers with nine or more O atoms and all dimers condensed irreversibly even at 20 degrees C. Using the gas- and particle-phase chemistry kinetic multilayer model ADCHAM, we were also able to reproduce the experimentally observed HOM composition, yields, and temperature dependence.
  •  
308.
  • Löndahl, Jakob, et al. (författare)
  • Aerosol exposure versus aerosol cooling of climate: what is the optimal emission reduction strategy for human health?
  • 2010
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324 .- 1680-7316. ; 10:19, s. 9441-9449
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles, climate change, and health have thought-provoking interactions. Air pollution is one of the largest environmental problems concerning human health. On the other hand, aerosol particles can have a cooling effect on climate and a reduction of those emissions may result in an increased temperature globally, which in turn may have negative health effects. The objective of this work was to investigate the "total health effects" of aerosol emissions, which include both exposure to particles and consequences for climate change initiated by particles. As a case study the "total health effect" from ship emissions was derived by subtracting the number of deaths caused by exposure with the estimated number of lives saved from the cooling effect of the emissions. The analysis showed that, with current level of scientific understanding, it could not be determined whether ship emissions are negative or positive for human health on a short time scale. This first attempt to approximate the combined effect of particle emissions on health shows that reductions of particulate air pollution will in some cases (black carbon) have win-win effects on health and climate, but sometimes also cause a shift from particle exposure-related health effects towards an increasing risk of health consequences from climate change. Thus, measures to reduce aerosol emissions have to be coupled with climate change mitigation actions to achieve a full health benefit on a global level.
  •  
309.
  • Mann, G. W., et al. (författare)
  • Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:9, s. 4679-4713
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e. g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
  •  
310.
  • Manninen, H. E., et al. (författare)
  • EUCAARI ion spectrometer measurements at 12 European sites - analysis of new particle formation events
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:16, s. 7907-7927
  • Tidskriftsartikel (refereegranskat)abstract
    • We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range similar to 1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 301-310 av 595
Typ av publikation
tidskriftsartikel (588)
forskningsöversikt (7)
Typ av innehåll
refereegranskat (595)
Författare/redaktör
Krejci, Radovan (48)
Murtagh, Donal, 1959 (37)
Tunved, Peter (36)
Kulmala, M (35)
Riipinen, Ilona (34)
Kulmala, Markku (33)
visa fler...
Simpson, David, 1961 (30)
Swietlicki, Erik (29)
Urban, Joachim, 1964 (27)
Ström, Johan (26)
Hallquist, Mattias, ... (25)
Leck, Caroline (24)
Hansson, Hans-Christ ... (21)
Ekman, Annica M. L. (21)
Mohr, Claudia (21)
Eriksson, Patrick, 1 ... (19)
Tjernström, Michael (17)
Petaja, T. (17)
Roldin, Pontus (16)
Baltensperger, Urs (16)
Petäjä, Tuukka (16)
Zieger, Paul (15)
Mellqvist, Johan, 19 ... (15)
Wiedensohler, Alfred (15)
Kristensson, Adam (14)
Milz, Mathias (14)
Kiendler-Scharr, A. (14)
Stiller, G. P. (14)
Wiedensohler, A. (13)
Walker, K. A. (13)
Coe, H. (13)
Virtanen, Annele (13)
Blumenstock, T. (12)
Huang, Wei (12)
Höpfner, M. (12)
Gumbel, Jörg (11)
Laj, Paolo (11)
Baltensperger, U. (11)
Hase, F. (11)
Thomson, Erik S (11)
von Clarmann, T. (11)
Tillmann, R. (11)
Yttri, K. E. (10)
Sellegri, Karine (10)
Bianchi, Federico (10)
Kerminen, Veli-Matti (10)
Ehn, Mikael (10)
Wu, Cheng, 1985 (10)
Stohl, A. (10)
Fuchs, H. (10)
visa färre...
Lärosäte
Stockholms universitet (322)
Chalmers tekniska högskola (123)
Lunds universitet (91)
Göteborgs universitet (85)
Luleå tekniska universitet (33)
Uppsala universitet (23)
visa fler...
IVL Svenska Miljöinstitutet (17)
Umeå universitet (7)
Kungliga Tekniska Högskolan (7)
Örebro universitet (4)
Linköpings universitet (2)
RISE (2)
Sveriges Lantbruksuniversitet (2)
Malmö universitet (1)
Linnéuniversitetet (1)
Karolinska Institutet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (595)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (531)
Teknik (45)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy