SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1939 327X "

Sökning: L773:1939 327X

  • Resultat 41-50 av 577
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Barnes, BR, et al. (författare)
  • Changes in exercise-induced gene expression in 5'-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:12, s. 3484-3489
  • Tidskriftsartikel (refereegranskat)abstract
    • 5′-AMP–activated protein kinase (AMPK) is important for metabolic sensing. We used AMPKγ3 mutant–overexpressing Tg-Prkag3225Q and AMPKγ3-knockout Prkag3−/− mice to determine the role of the AMPKγ3 isoform in exercise-induced metabolic and gene regulatory responses in skeletal muscle. Mice were studied after 2 h swimming or 2.5 h recovery. Exercise increased basal and insulin-stimulated glucose transport, with similar responses among genotypes. In Tg-Prkag3225Q mice, acetyl-CoA carboxylase (ACC) phosphorylation was increased and triglyceride content was reduced after exercise, suggesting that this mutation promotes greater reliance on lipid oxidation. In contrast, ACC phosphorylation and triglyceride content was similar between wild-type and Prkag3−/− mice. Expression of genes involved in lipid and glucose metabolism was altered by genetic modification of AMPKγ3. Expression of lipoprotein lipase 1, carnitine palmitoyl transferase 1b, and 3-hydroxyacyl–CoA dehydrogenase was increased in Tg-Prkag3225Q mice, with opposing effects in Prkag3−/− mice after exercise. GLUT4, hexokinase II (HKII), and glycogen synthase mRNA expression was increased in Tg-Prkag3225Q mice after exercise. GLUT4 and HKII mRNA expression was increased in wild-type mice and blunted in Prkag3−/− mice after recovery. In conclusion, the Prkag3225Q mutation, rather than presence of a functional AMPKγ3 isoform, directly promotes metabolic and gene regulatory responses along lipid oxidative pathways in skeletal muscle after endurance exercise.
  •  
42.
  • Barnes, BR, et al. (författare)
  • Isoform-specific regulation of 5' AMP-activated protein kinase in skeletal muscle from obese Zucker (fa/fa) rats in response to contraction
  • 2002
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 51:9, s. 2703-2708
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose transport can be activated in skeletal muscle in response to insulin via activation of phosphoinositide (PI) 3-kinase and in response to contractions or hypoxia, presumably via activation of 5′ AMP-activated protein kinase (AMPK). We determined the effects of insulin and muscle contraction/hypoxia on PI 3-kinase, AMPK, and glucose transport activity in epitrochlearis skeletal muscle from insulin-resistant Zucker (fa/ fa) rats. Insulin-stimulated glucose transport in isolated skeletal muscle was reduced 47% in obese versus lean rats, with a parallel 42% reduction in tyrosine-associated PI 3-kinase activity. Contraction and hypoxia elicited normal responses for glucose transport in skeletal muscle from insulin-resistant obese rats. Isoform-specific AMPK activity was measured in skeletal muscle in response to insulin, contraction, or hypoxia. Contraction increased AMPKα1 activity 2.3-fold in lean rats, whereas no effect was noted in obese rats. Hypoxia increased AMPKα1 activity to a similar extent (more than sixfold) in lean and obese rats. Regardless of genotype, contraction, and hypoxia, each increased AMPKα2 activity more than fivefold, whereas insulin did not alter either AMPKα1 or -α2 activity in skeletal muscle. In conclusion, obesity-related insulin resistance is associated with an isoform-specific impairment in AMPKα1 in response to contraction. However, this impairment does not appear to affect contraction-stimulated glucose transport. Activation of AMPKα2 in response to muscle contraction/ exercise is associated with a parallel and normal increase in glucose transport in insulin-resistant skeletal muscle.
  •  
43.
  • Baumeier, Christian, et al. (författare)
  • Hepatic DPP4 DNA methylation associates with fatty liver
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:1, s. 25-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatic DPP4 expression is elevated in subjects with ectopic fat accumulation in the liver. However, whether increased dipeptidyl peptidase 4 (DPP4) is involved in the pathogenesis or is rather a consequence ofmetabolic disease is not known. We therefore studied the transcriptional regulation of hepatic Dpp4 in young mice prone to diet-induced obesity. Already at 6 weeks of age, expression of hepatic Dpp4 was increased in mice with high weight gain, independent of liver fat content. In the same animals, methylation of four intronic CpG sites was decreased, amplifying glucose-induced transcription of hepatic Dpp4. In older mice, hepatic triglyceride content was increased only in animals with elevated Dpp4 expression. Expression and release of DPP4 were markedly higher in the liver compared with adipose depots. Analysis of human liver biopsy specimens revealed a correlation of DPP4 expression and DNA methylation to stages of hepatosteatosis and nonalcoholic steatohepatitis. In summary, our results indicate a crucial role of the liver in participation to systemic DPP4 levels. Furthermore, the data show that glucoseinduced expression of Dpp4 in the liver is facilitated by demethylation of the Dpp4 gene early in life. This might contribute to early deteriorations in hepatic function, which in turn result in metabolic disease such as hepatosteatosis later in life.
  •  
44.
  • Bavenholm, PN, et al. (författare)
  • Fatty acid oxidation and the regulation of malonyl-CoA in human muscle
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:7, s. 1078-1083
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions concerning whether malonyl-CoA is regulated in human muscle and whether malonyl-CoA modulates fatty acid oxidation are still unanswered. To address these questions, whole-body fatty acid oxidation and the concentration of malonyl-CoA, citrate, and malate were determined in the vastus lateralis muscle of 16 healthy nonobese Swedish men during a sequential euglycemic-hyperinsulinemic clamp. Insulin was infused at rates of 0.25 and 1.0 mU x kg(-1) x min(-1), and glucose was infused at rates of 2.0 +/- 0.2 and 8.1 +/- 0.7 mg x kg(-1) x min(-1), respectively. During the low-dose insulin infusion, whole-body fatty acid oxidation, as determined by indirect calorimetry, decreased by 22% from a basal rate of 0.94 +/- 0.06 to 0.74 +/- 0.07 mg x kg(-1) x min(-1) (P = 0.005), but no increase in malonyl-CoA was observed. In contrast, during the high-dose insulin infusion, malonyl-CoA increased from 0.20 +/- 0.01 to 0.24 +/- 0.01 nmol/g (P < 0.001), and whole-body fatty acid oxidation decreased by an additional 41% to 0.44 +/- 0.06 mg x kg(-1) x min(-1) (P < 0.001). The increase in malonyl-CoA was associated with 30-50% increases in the concentrations of citrate (102 +/- 6 vs. 137 +/- 7 nmol/g, P < 0.001), an allosteric activator of the rate-limiting enzyme in the malonyl-CoA formation, acetyl-CoA carboxylase, and malate (80 +/- 6 vs. 126 +/- 9 nmol/g, P = 0.002), an antiporter for citrate efflux from the mitochondria. Significant correlations were observed between the concentration of malonyl-CoA and both glucose utilization (r = 0.53, P = 0.002) and the sum of the concentrations of citrate and malate (r = 0.52, P < 0.001), a proposed index of the cytosolic concentration of citrate. In addition, an inverse correlation between malonyl-CoA concentration and fatty acid oxidation was observed (r = -0.32, P = 0.03). The results indicate that an infusion of insulin and glucose at a high rate leads to increases in the concentration of malonyl-CoA in skeletal muscle and to decreases in whole-body and, presumably, muscle fatty acid oxidation. Furthermore, they suggest that the increase in malonyl-CoA in this situation is due, at least in part, to an increase in the cytosolic concentration of citrate. Because cytosolic citrate is also an inhibitor of phosphofructokinase, an attractive hypothesis is that changes in its concentration are part of an autoregulatory mechanism by which glucose modulates its own use and the use of fatty acids as fuels for skeletal muscle.
  •  
45.
  • Bavenholm, PN, et al. (författare)
  • Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance
  • 2001
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 50:6, s. 1449-1454
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperglycemia results from an imbalance between endocrine pancreatic function and hepatic and extrahepatic insulin sensitivity. We studied 57 well-matched Swedish men with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or mild diabetes. Oral glucose tolerance and insulin release were assessed during an oral glucose tolerance test (OGTT). Insulin sensitivity and glucose turnover were determined during a two-step euglycemic insulin clamp (infusion 0.25 and 1.0 mU · kg–1 · min–1). High-performance liquid chromatography–purified [6-3H]glucose was used as a tracer. During low-insulin infusion, the rate of endogenous glucose production (EGP) decreased more in subjects with NGT than in subjects with IGT or diabetes (δ rate of appearance [Ra] 1.25 ± 0.10 vs. 0.75 ± 0.14 vs. 0.58 ± 0.09 mg · kg–1 · min–1, P < 0.001). The corresponding rates of glucose infusion during the high-dose insulin infusion (M values) were 8.3 ± 0.6 vs. 5.4 ± 0.9 vs. 4.7 ± 0.4 mg · kg–1 · min–1 (P < 0.001). A total of 56% of the variation in glucose area under the curve (AUC) during OGTT (glucose AUC) was mainly explained by δ Ra (increase in multiple R2 0.42) but also by δ Rd (rate of disapperance) (increase in multiple R2 0.05), and the early insulin response during OGTT contributed significantly (increase in multiple R2 0.07). When M value was included in the model, reflecting extrahepatic insulin sensitivity, it contributed to 20% of the variation in glucose AUC, and together with the incremental insulin response (increase in multiple R2 0.21), it explained 45% of the variation. In conclusion, insulin sensitivity of suppression of EGP plays the most important role in the determination of blood glucose response during OGTT.
  •  
46.
  • Benedict, Christian, et al. (författare)
  • Fat Mass and Obesity-Associated Gene (FTO) Is Linked to Higher Plasma Levels of the Hunger Hormone Ghrelin and Lower Serum Levels of the Satiety Hormone Leptin in Older Adults
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:11, s. 3955-3959
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms through which common polymorphisms in the fat mass and obesity-associated gene (FTO) drive the development of obesity in humans are poorly understood. Using cross-sectional data from 985 older people (50% females) who participated at age 70 years in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS), circulating levels of ghrelin and leptin were measured after an overnight fast. In addition, subjects were genotyped for FTO rs17817449 (AA, n = 345 [35%]; AC/CA, n = 481 [48.8%]; CC, n = 159 [16.1%]). Linear regression analyses controlling for sex, selfreported physical activity level, fasting plasma glucose, and BMI were used. A positive relationship between the number of FTO C risk alleles and plasma ghrelin levels was found (P = 0.005; relative plasma ghrelin difference between CC and AA carriers = similar to 9%). In contrast, serum levels of the satiety-enhancing hormone leptin were inversely linked to the number of FTO C risk alleles (P = 0.001; relative serum leptin difference between CC and AA carriers = similar to 11%). These associations were also found when controlling for waist circumference. The present findings suggest that FTO may facilitate weight gain in humans by shifting the endocrine balance from the satiety hormone leptin toward the hunger-promoting hormone ghrelin.
  •  
47.
  • Benedict, Christian, et al. (författare)
  • Intranasal Insulin Enhances Postprandial Thermogenesis and Lowers Postprandial Serum Insulin Levels in Healthy Men
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 60:1, s. 114-118
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Animal studies indicate a prominent role of brain insulin signaling in the regulation of peripheral energy metabolism. We determined the effect of intranasal insulin, which directly targets the brain, on glucose metabolism and energy expenditure in humans.RESEARCH DESIGN AND METHODSIn a double-blind, placebo-controlled, balanced within-subject comparison, 19 healthy normal-weight men (18-26 years old) were intranasally administered 160 IU human insulin after an overnight fast. Energy expenditure assessed via indirect calorimetry and blood concentrations of glucose, insulin, C-peptide, and free fatty acids (FFAs) were measured before and after insulin administration and the subsequent consumption of a high-calorie liquid meal of 900 kcal.RESULTSIntranasal insulin, compared with placebo, increased postprandial energy expenditure, i.e., diet-induced thermogenesis, and decreased postprandial concentrations of circulating insulin and C-peptide, whereas postprandial plasma glucose concentrations did not differ from placebo values. Intranasal insulin also induced a transient decrease in prandial serum FFA levels.CONCLUSIONSEnhancing brain insulin signaling by means of intranasal insulin administration enhances the acute thermoregulatory and glucoregulatory response to food intake, suggesting that central nervous insulin contributes to the control of whole-body energy homeostasis in humans.
  •  
48.
  • Bennet, W, et al. (författare)
  • Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation?
  • 1999
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 48:10, s. 1907-1914
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable difference in success rates between clinical pancreas transplantation and islet transplantation is poorly understood. Despite the same histocompatibility barrier and similar immunosuppressive treatments in both transplantation procedures, human intraportal islet transplantation has a much inferior success rate than does vascularized pancreas transplantation. Thus far, little attention has been directed to the possibility that islets transplanted into the blood stream may elicit an injurious incompatibility reaction. We have tested this hypothesis in vitro with human islets and in vivo with porcine islets. Human islets were exposed to nonanticoagulated human ABO-compatible blood in surface-heparinized polyvinyl chloride tubing loops. Heparin and/or the soluble complement receptor 1 (sCR1) TP10 were tested as additives. Adult porcine islets were transplanted intraportally into pigs, and the liver was recovered after 60 min for immunohistochemical staining. Human islets induced a rapid consumption and activation of platelets. Neutrophils and monocytes were also consumed, and the coagulation and complement systems were activated. Upon histological examination, islets were found to be embedded in clots and infiltrated with CD11+ leukocytes. Furthermore, the cellular morphology was disrupted. When heparin and sCR1 were added to the blood, these events were avoided. Porcine islets retrieved in liver biopsies after intraportal islet allotransplantation showed a morphology similar to that of human islets perifused in vitro. Thus, exposure of isolated islets of Langerhans to allogenic blood resulted in significant damage to the islets, a finding that could explain the unsatisfactory clinical results obtained with intraportal islet transplantation. Because administration of heparin in combination with a soluble complement receptor abrogated these events, such treatment would presumably improve the outcome of clinical islet transplantation by reducing both initial islet loss and subsequent specific immune responses.
  •  
49.
  • Berglund, Lisa, et al. (författare)
  • Glucose-Dependent Insulinotropic Polypeptide (GIP) Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB.
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 65:1, s. 239-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone with extrapancreatic effects beyond glycemic control. Here we demonstrate unexpected effects of GIP signaling in the vasculature. GIP induces the expression of the pro-atherogenic cytokine osteopontin (OPN) in mouse arteries, via local release of endothelin-1 (ET-1) and activation of cAMP response element binding protein (CREB). Infusion of GIP increases plasma OPN levels in healthy individuals. Plasma ET-1 and OPN levels are positively correlated in patients with critical limb ischemia. Fasting GIP levels are higher in individuals with a history of cardiovascular disease (myocardial infarction, stroke) when compared to controls. GIP receptor (GIPR) and OPN mRNA levels are higher in carotid endarterectomies from patients with symptoms (stroke, transient ischemic attacks, amaurosis fugax) than in asymptomatic patients; and expression associates to parameters characteristic of unstable and inflammatory plaques (increased lipid accumulation, macrophage infiltration and reduced smooth muscle cell content). While GIPR expression is predominantly endothelial in healthy arteries from human, mouse, rat and pig; remarkable up-regulation is observed in endothelial and smooth muscle cells upon culture conditions yielding a "vascular disease-like" phenotype. Moreover, a common variant rs10423928 in the GIPR gene associated with increased risk of stroke in type 2 diabetes patients.
  •  
50.
  • Bergman, Marie-Louise, et al. (författare)
  • Diabetes protection and restoration of thymocyte apoptosis in NOD Idd6 congenic strains
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 52:7, s. 1677-1682
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes in the nonobese diabetic (NOD) mouse is a multifactorial and polygenic disease. The NOD-derived genetic factors that contribute to type 1 diabetes are named Idd (insulin-dependent diabetes) loci. To date, the biological functions of the majority of the Idd loci remain unknown. We have previously reported that resistance of NOD immature thymocytes to depletion by dexamethazone (Dxm) maps to the Idd6 locus. Herein, we refine this phenotype using a time-course experiment of apoptosis induction upon Dxm treatment. We confirm that the Idd6 region controls apoptosis resistance in immature thymocytes. Moreover, we establish reciprocal Idd6 congenic NOD and B6 strains to formally demonstrate that the Idd6 congenic region mediates restoration of the apoptosis resistance phenotype. Analysis of the Idd6 congenic strains indicates that a 3-cM chromosomal region located within the distal part of the Idd6 region controls apoptosis resistance in NOD immature thymocytes. Together, these data support the hypothesis that resistance to Dxm-induced apoptosis in NOD immature thymocytes is controlled by a genetic factor within the region that also contributes to type 1 diabetes pathogenesis. We propose that the diabetogenic effect of the Idd6 locus is exerted at the level of the thymic selection process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 577
Typ av publikation
tidskriftsartikel (570)
forskningsöversikt (4)
konferensbidrag (3)
Typ av innehåll
refereegranskat (563)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Groop, Leif (67)
Zierath, JR (29)
Arner, P (28)
Tuomi, Tiinamaija (26)
Lyssenko, Valeriya (25)
Lernmark, Åke (23)
visa fler...
Korsgren, Olle (22)
Almgren, Peter (22)
Ahren, Bo (20)
Berggren, PO (19)
McCarthy, Mark I (18)
Efendic, S (17)
Krook, A (17)
Franks, Paul W. (17)
Hansen, Torben (17)
Wareham, Nicholas J. (16)
Langenberg, Claudia (16)
Ryden, M (15)
Ling, Charlotte (14)
Isomaa, Bo (14)
Vaag, Allan (14)
Pedersen, Oluf (14)
Ingelsson, Erik (14)
Smith, Ulf, 1943 (14)
Carlsson, Per-Ola (14)
Franks, Paul (13)
Lind, Lars (13)
Orho-Melander, Marju (13)
Ludvigsson, Johnny (13)
Eliasson, Lena (13)
Nilsson, Peter (12)
Rorsman, Patrik (12)
Orešič, Matej, 1967- (12)
Walker, Mark (12)
Holm, Cecilia (12)
Altshuler, David (12)
Laakso, Markku (11)
Ladenvall, Claes (10)
Salehi, S Albert (9)
Ahlqvist, Emma (9)
Renström, Erik (9)
Wierup, Nils (9)
Jonsson, Anna (9)
Kuusisto, Johanna (9)
Scott, Robert A (9)
Knowler, William C. (9)
Toppari, Jorma (9)
Barroso, Ines (9)
Froguel, Philippe (9)
Dahlman, I (9)
visa färre...
Lärosäte
Karolinska Institutet (237)
Lunds universitet (205)
Uppsala universitet (122)
Göteborgs universitet (60)
Umeå universitet (46)
Linköpings universitet (26)
visa fler...
Örebro universitet (23)
Stockholms universitet (10)
Chalmers tekniska högskola (5)
Kungliga Tekniska Högskolan (2)
Gymnastik- och idrottshögskolan (2)
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
Högskolan Dalarna (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (577)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (344)
Naturvetenskap (6)
Samhällsvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy