SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2050 7488 "

Sökning: L773:2050 7488

  • Resultat 21-30 av 402
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Baur, Christian, et al. (författare)
  • Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:37, s. 21244-21253
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-rich transition metal disordered rock salt (DRS) oxyfluorides have the potential to lessen one large bottleneck for lithium ion batteries by improving the cathode capacity. However, irreversible reactions at the electrode/electrolyte interface have so far led to fast capacity fading during electrochemical cycling. Here, we report the synthesis of two new Li-rich transition metal oxyfluorides Li2V0.5Ti0.5O2F and Li2V0.5Fe0.5O2F using the mechanochemical ball milling procedure. Both materials show substantially improved cycling stability compared to Li2VO2F. Rietveld refinements of synchrotron X-ray diffraction patterns reveal the DRS structure of the materials. Based on density functional theory (DFT) calculations, we demonstrate that substitution of V3+ with Ti3+ and Fe3+ favors disordering of the mixed metastable DRS oxyfluoride phase. Hard X-ray photoelectron spectroscopy shows that the substitution stabilizes the active material electrode particle surface and increases the reversibility of the V3+/V5+ redox couple. This work presents a strategy for stabilization of the DRS structure leading to improved electrochemical cyclability of the materials.
  •  
22.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • Scalable and thermally-integrated solar water-splitting modules using Ag-doped Cu(In,Ga)Se2 and NiFe layered double hydroxide nanocatalysts
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:22, s. 12079-12091
  • Tidskriftsartikel (refereegranskat)abstract
    • Photovoltaic (PV) electrolysis is an important and powerful technology for environmentally-friendly fuel production based on solar energy. By directly coupling solar cell materials to electrochemical systems to perform water electrolysis, solar energy can be converted into hydrogen fuel utilizing locally-generated heat and avoid losses from DC-DC convertors and power grid transmission. Although there have been significant contributions to the photoelectrochemical and PV-electrolysis field using isolated laboratory cells, the capacity to upscale and retain high levels of efficiency in larger modules remains a critical issue for widespread use and application. In this study, we develop thermally-integrated, solar-driven water-splitting device modules using AgCu(In,Ga)Se2 (ACIGS) and an alkaline electrolyzer system with NiFe-layered double hydroxide (LDH) nanocatalysts with devices of 82-100 cm2 area. The Ga-content in the ACIGS solar cells is tuned to achieve an optimal voltage for the catalyst system, and the average efficiencies and durability of the PV-electrolyzer were tested in up to seven-day indoor and 21 day outdoor operations. We achieved a solar-to-hydrogen (STH) module efficiency of 13.4% from gas volume measurements for the system with a six-cell CIGS-electrolyzer module with an active area of 82.3 cm2 and a 17.27% PV module efficiency under 100 mW cm−2 illumination, and thus 77% electricity-to-hydrogen efficiency at one full sun. Outdoor tests under mid-Europeen winter conditions exhibited an STH efficiency between 10 and 11% after the initial activation at the installation site in Jülich, Germany, in December 2020, despite challenging outdoor-test weather conditions, including sub-zero temperatures. 
  •  
23.
  • Bergqvist, Jonas, et al. (författare)
  • Sub-glass transition annealing enhances polymer solar cell performance
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488. ; 2:17, s. 6146-6152
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal annealing of non-crystalline polymer: fullerene blends typically results in a drastic decrease in solar cell performance. In particular aggressive annealing above the glass transition temperature results in a detrimental coarsening of the blend nanostructure. We demonstrate that mild annealing below the glass transition temperature is a viable avenue to control the nanostructure of a non-crystalline thiophene-quinoxaline copolymer: fullerene blend. Direct imaging methods indicate that coarsening of the blend nanostructure can be avoided. However, a combination of absorption and luminescence spectroscopy reveals that local changes in the polymer conformation as well as limited fullerene aggregation are permitted to occur. As a result, we are able to optimise the solar cell performance evenly across different positions of the coated area, which is a necessary criterion for large-scale, high throughput production.
  •  
24.
  • Bergqvist, J., et al. (författare)
  • Sub-glass transition annealing enhances polymer solar cell performance
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488 .- 2050-7496. ; 2:17, s. 6146-6152
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal annealing of non-crystalline polymer:fullerene blends typically results in a drastic decrease in solar cell performance. In particular aggressive annealing above the glass transition temperature results in a detrimental coarsening of the blend nanostructure. We demonstrate that mild annealing below the glass transition temperature is a viable avenue to control the nanostructure of a non-crystalline thiophene–quinoxaline copolymer:fullerene blend. Direct imaging methods indicate that coarsening of the blend nanostructure can be avoided. However, a combination of absorption and luminescence spectroscopy reveals that local changes in the polymer conformation as well as limited fullerene aggregation are permitted to occur. As a result, we are able to optimise the solar cell performance evenly across different positions of the coated area, which is a necessary criterion for large-scale, high throughput production.
  •  
25.
  • Beydaghi, Hossein, et al. (författare)
  • Functionalized metallic transition metal dichalcogenide (TaS2) for nanocomposite membranes in direct methanol fuel cells
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:10, s. 6368-6381
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we designed a novel nanocomposite proton-exchange membrane (PEM) based on sulfonated poly(ether ether ketone) (SPEEK) and tantalum disulfide functionalized with terminal sulfonate groups (S-TaS2). The PEMs are prepared through a solution-casting method and exploited in direct methanol fuel cells (DMFCs). Two-dimensional S-TaS2 nanoflakes were prepared as a functional additive to produce the novel nanocomposite membrane for DMFCs due to their potential as a fuel barrier and an excellent proton conductor. To optimize the degree of sulfonation (DS) of SPEEK and the weight percentage (wt%) of S-TaS2 nanoflakes in PEMs, we used the central composite design of the response surface method. The optimum PEM was obtained for SPEEK DS of 1.9% and a weight fraction (wt%) of S-TaS2 nanoflakes of 70.2%. The optimized membrane shows a water uptake of 45.72%, a membrane swelling of 9.64%, a proton conductivity of 96.24 mS cm(-1), a methanol permeability of 2.66 x 10(-7) cm(2) s(-1), and a selectivity of 36.18 x 10(4) S s cm(-3). Moreover, SPEEK/S-TaS2 membranes show superior thermal and chemical stabilities compared to those of pristine SPEEK. The DMFC fabricated with the SPEEK/S-TaS2 membrane has reached the maximum power densities of 64.55 mW cm(-2) and 161.18 mW cm(-2) at 30 degrees C and 80 degrees C, respectively, which are similar to 78% higher than the values obtained with the pristine SPEEK membrane. Our results demonstrate that SPEEK/S-TaS2 membranes have a great potential for DMFC applications.
  •  
26.
  • Bharmoria, Pankaj, 1985, et al. (författare)
  • Recyclable optical bioplastics platform for solid state red light harvesting via triplet-triplet annihilation photon upconversion
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7496 .- 2050-7488. ; 10:40, s. 21279-21290
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable photonics applications of solid-state triplet-triplet annihilation photon upconversion (TTA-UC) are limited by a small UC spectral window, low UC efficiency in air, and non-recyclability of polymeric materials used. In a step to overcome these issues, we have developed new recyclable TTA-UC bioplastics by encapsulating TTA-UC chromophores liquid inside the semicrystalline gelatin films showing broad-spectrum upconversion (red/far-red to blue) with high UC efficiency in air. For this, we synthesized a new anionic annihilator, sodium-TIPS-anthracene-2-sulfonate (TIPS-AnS), that combined with red/far-red sensitizers (PdTPBP/Os(m-peptpy)(2)(TFSI)(2)), a liquid surfactant Triton X-100 reduced (TXr) and protein gelatin (G) formed red/far-red to blue TTA-UC bioplastic films just by air drying of their aqueous solutions. The G-TXr-TIPS-AnS-PdTPBP film showed record red to blue (633 to 478 nm) TTA-UC quantum yield of 8.5% in air. The high UC quantum yield has been obtained due to the fluidity of dispersed TXr containing chromophores and oxygen blockage by gelatin fibers that allowed efficient diffusion of triplet excited chromophores. Further, the G-TXr-TIPS-AnS-Os(m-peptpy)(2)(TFSI)(2) bioplastic film displayed far-red to blue (700-730 nm to 478 nm) TTA-UC, demonstrating broad-spectrum photon harvesting. Finally, we demonstrated the recycling of G-TXr-TIPS-AnS-PdTPBP bioplastics by developing a downstream approach that gives new directions for designing future recyclable photonics bioplastic materials.
  •  
27.
  • Bhunia, Asamanjoy, et al. (författare)
  • A photoluminescent covalent triazine framework : CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:35, s. 13450-13457
  • Tidskriftsartikel (refereegranskat)abstract
    • A highly photoluminescent (PL) porous covalent triazine-based framework (PCTF-8) is synthesized from tetra(4-cyanophenyl) ethylene by using trifluoromethanesulfonic acid as the catalyst at room temperature. Due to triazine units in the framework, the PCTF-8 exhibits excellent thermal stability (>400 degrees C). The Brunauer-Emmett-Teller (BET) specific surface area of PCTF-8 is 625 m(2) g(-1) which is lower than the one obtained from the synthesis under Lewis acid conditions (ZnCl2). At 1 bar and 273 K, the PCTF-8 adsorbs a significant amount of CO2 (56 cm(3) g(-1)) and CH4 (17 cm(3) g(-1)) which is highly comparable to nanoporous 1,3,5-triazine frameworks (NOP-1-6, 29-56 cm(3) g(-1)). This nitrogen rich framework exhibits good ideal selectivity (61 : 1 (85% N-2 : 15% CO2) at 273 K, 1 bar). Thus, it can be used as a promising candidate for potential applications in post-combustion CO2 capture and sequestration technologies. In addition, photoluminescence properties as well as the sensing behaviour towards nitroaromatics have been demonstrated. The fluorescence emission intensity of PCTF-8 is quenched by ca. 71% in the presence of 2,4,6-trinitrophenol (TNP). From time-resolved studies, a static quenching behaviour was found. This high photoluminescence property is used for hydrogen evolving organic photocatalysis from water in the presence of a sacrificial electron donor and a cocatalyst.
  •  
28.
  • Bielecki, Johan, 1982, et al. (författare)
  • Short-range structure of the brownmillerite-type oxide Ba2In2O5 and its hydrated proton-conducting form BaInO3H
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 2:40, s. 16915-16924
  • Tidskriftsartikel (refereegranskat)abstract
    • The vibrational spectra and short-range structure of the brownmillerite-type oxide Ba2In2O6 and its hydrated form BaInO3H, are investigated by means of Raman, infrared, and inelastic neutron scattering spectroscopies together with density functional theory calculations. For Ba2In2O6, which may be described as an oxygen deficient perovskite structure with alternating layers of InO6 octahedra and InO4 tetrahedra, the results affirm a short-range structure of Icmm symmetry, which is characterized by random orientation of successive layers of InO4 tetrahedra. For the hydrated, proton conducting, form, BaInO3H, the results suggest that the short-range structure is more complicated than the P4/mbm symmetry that has been proposed previously on the basis of neutron diffraction, but rather suggest a proton configuration close to the lowest energy structure predicted by Martinez et al. [J.-R. Martinez, C. E. Moen, S. Stoelen, N. L. Allan, J. Solid State Chem., 180, 3388, (2007)]. An intense Raman active vibration at 150 cm(-1) is identified as a unique fingerprint of this proton configuration.
  •  
29.
  • Bielecki, Johan, et al. (författare)
  • Structure and dehydration mechanism of the proton conducting oxide Ba2In2O5(H2O)(x)
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:4, s. 1224-1232
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure and dehydration mechanism of the proton conducting oxide Ba2In2O5(H2O)(x) are investigated by means of variable temperature (20-600 degrees C) Raman spectroscopy together with thermal gravimetric analysis and inelastic neutron scattering. At room temperature, Ba2In2O5(H2O)(x) is found to be fully hydrated (x = 1) and to have a perovskite-like structure, which dehydrates gradually with increasing temperature and at around 600 degrees C the material is essentially dehydrated (x approximate to 0.2). The dehydrated material exhibits a brownmillerite structure, which is featured by alternating layers of InO6 octahedra and InO4 tetrahedra. The transition from a perovskite-like to a brownmillerite-like structure upon increasing temperature occurs through the formation of an intermediate phase at ca. 370 degrees C, corresponding to a hydration degree of approximately 50%. The structure of the intermediate phase is similar to the structure of the dehydrated material, but with the difference that it exhibits a non-centrosymmetric distortion of the InO6 octahedra that is not present in the dehydrated material. The dehydration process upon heating is a two-stage mechanism; for temperatures below the hydrated-to-intermediate phase transition, dehydration is characterized by a homogenous release of protons over the entire oxide lattice, whereas above the transition a preferential desorption of protons originating in the nominally tetrahedral layers is observed. Furthermore, our spectroscopic results point towards the co-existence of two structural phases, which relate to the two lowest-energy proton configurations in the material. The relative contributions of the two proton configurations depend on how the sample is hydrated.
  •  
30.
  • Boota, Muhammad, et al. (författare)
  • MXene binder stabilizes pseudocapacitance of conducting polymers
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:36, s. 20356-20361
  • Tidskriftsartikel (refereegranskat)abstract
    • Conducting polymers (CPs) are by far the most studied organic materials for supercapacitors. Yet, their structural instability stemming from volumetric expansion/contraction during charge/discharge results in capacitance loss after moderate cycling that limits their applications. Here, we show that the remarkable cycling stability, capacitance, and rate performance can be achieved by replacing conventional electrode additives (carbon black or insulating polymer binder) with titanium carbide (Ti3C2Tx) MXene. Using polyaniline (PANI) as a model system, an addition of only 15 wt% of Ti3C2Tx MXene binder delivered remarkable capacitance retention of 96% after 10 000 cycles at 50 mV s(-1) and high-rate capability with a capacitance of 434 F g(-1). Using density functional theory (DFT) calculations, we show that, unlike insulating polymer binders, surface groups of MXene bond to PANI with a significantly high binding energy (up to -2.11 eV) via a charge transfer mechanism. This is one of the key mechanisms to achieve a high electrochemical performance of the CP-based electrodes when MXene is used as a binder. We expect that a similar approach can be used for stabilizing other organic electrode materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 402
Typ av publikation
tidskriftsartikel (385)
forskningsöversikt (17)
Typ av innehåll
refereegranskat (392)
övrigt vetenskapligt/konstnärligt (9)
populärvet., debatt m.m. (1)
Författare/redaktör
Inganäs, Olle (23)
Wang, Ergang, 1981 (16)
Gao, Feng (15)
Andersson, Mats, 196 ... (13)
Sun, Licheng, 1962- (13)
Jannasch, Patric (12)
visa fler...
Chakraborty, Sudip (12)
Sun, Licheng (12)
Ahuja, Rajeev, 1965- (11)
Ahuja, Rajeev (11)
Zhang, Fengling (11)
Hagfeldt, Anders (11)
Johansson, Patrik, 1 ... (10)
Edström, Kristina (10)
Berggren, Magnus (9)
Kloo, Lars (9)
Rensmo, Håkan (8)
Crispin, Xavier (8)
Müller, Christian, 1 ... (8)
Banerjee, Amitava (8)
Boschloo, Gerrit (8)
Younesi, Reza (8)
Nyholm, Leif (8)
Xia, Yuxin (8)
Salazar-Alvarez, Ger ... (7)
Gustafsson, Torbjörn (7)
Karlsson, Maths, 197 ... (7)
Johansson, Erik M. J ... (7)
Vomiero, Alberto (6)
Moth-Poulsen, Kasper ... (6)
Tai, Cheuk-Wai (6)
Xu, Chao (6)
Hedenqvist, Mikael S ... (6)
Hahlin, Maria (6)
Olsson, Richard T. (6)
Cappel, Ute B. (6)
Berglund, Lars, 1956 ... (6)
Araujo, Rafael B. (6)
Yang, Xichuan (6)
Tang, Zheng (6)
Safdari, Majid (6)
Liu, Xianjie (5)
Vagin, Mikhail (5)
Ågren, Hans (5)
Strømme, Maria, 1970 ... (5)
Edvinsson, Tomas, Pr ... (5)
Cheung, Ocean (5)
Brandell, Daniel, 19 ... (5)
Zhang, Xiaoliang (5)
Svensson, Per H. (5)
visa färre...
Lärosäte
Uppsala universitet (113)
Kungliga Tekniska Högskolan (97)
Chalmers tekniska högskola (77)
Linköpings universitet (74)
Stockholms universitet (37)
Lunds universitet (25)
visa fler...
RISE (20)
Luleå tekniska universitet (11)
Umeå universitet (10)
Karlstads universitet (8)
Mittuniversitetet (4)
Sveriges Lantbruksuniversitet (3)
Göteborgs universitet (2)
Högskolan Dalarna (2)
Mälardalens universitet (1)
visa färre...
Språk
Engelska (402)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (341)
Teknik (122)
Medicin och hälsovetenskap (6)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy