Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delles Christian) "

Sökning: WFRF:(Delles Christian)

  • Resultat 11-12 av 12
  • Föregående 1[2]
Sortera/gruppera träfflistan
  • Sulaiman, Wan N Wan, et al. (författare)
  • Does high-density lipoprotein protect vascular function in healthy pregnancy?
  • 2016
  • Ingår i: Clinical Science. - 0143-5221 .- 1470-8736. ; 130:7, s. 491-497
  • Tidskriftsartikel (refereegranskat)abstract
    • The maternal adaptation to pregnancy includes hyperlipidaemia, oxidative stress and chronic inflammation. In non-pregnant individuals, these processes are usually associated with poor vascular function. However, maternal vascular function is enhanced in pregnancy. It is not understood how this is achieved in the face of the adverse metabolic and inflammatory environment. Research into cardiovascular disease demonstrates that plasma HDL (high-density lipoprotein), by merit of its functionality rather than its plasma concentration, exerts protective effects on the vascular endothelium. HDL has vasodilatory, antioxidant, anti-thrombotic and anti-inflammatory effects, and can protect against endothelial cell damage. In pregnancy, the plasma HDL concentration starts to rise at 10 weeks of gestation, peaking at 20 weeks. The initial rise in plasma HDL occurs around the time of the establishment of the feto-placental circulation, a time when the trophoblast plugs in the maternal spiral arteries are released, generating oxidative stress. Thus there is the intriguing possibility that new HDL of improved function is synthesized around the time of the establishment of the feto-placental circulation. In obese pregnancy and, to a greater extent, in pre-eclampsia, plasma HDL levels are significantly decreased and maternal vascular function is reduced. Wire myography studies have shown an association between the plasma content of apolipoprotein AI, the major protein constituent of HDL, and blood vessel relaxation. These observations lead us to hypothesize that HDL concentration, and function, increases in pregnancy in order to protect the maternal vascular endothelium and that in pre-eclampsia this fails to occur.
  • Talmud, Philippa J., et al. (författare)
  • Gene-centric Association Signals for Lipids and Apolipoproteins Identified via the HumanCVD BeadChip
  • 2009
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297. ; 85:5, s. 628-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood lipids are important cardiovascular disease (CVD) risk factors with both genetic and environmental determinants. The Whitehall II study (n = 5592) was genotyped with the gene-centric HumanCVD BeadChip (Illumina). We identified 195 SNPs in 16 genes/regions associated with 3 major lipid fractions and 2 apolipoprotein components at p < 10(-5), with the associations being broadly concordant with prior genome-wide analysis. SNPs associated with LDL cholesterol and apolipoprotein B were located in LDLR, PCSK9, APOB, CELSR2, HWGCR, CETP, the TOMM40-APOE-C1-C2-C4 cluster, and the APOA5-A4-C3-A1 cluster; SNPs associated with HDL cholesterol and apolipoprotein AI were in CETP, LPL, LIPC, APOA5-A4-C3-A1, and ABCA1; and SNPs associated with triglycerides in GCKR, BAZIB, MLXIPL, LPL, and APOA5-A4-C3-A1. For 48 SNPs in previously unreported loci that were significant at p < 10(-4) in Whitehall II, in silico analysis including the British Women's Heart and Health Study, BRIGHT, ASCOT, and NORDIL studies (total n > 12,500) revealed previously unreported associations of SH2B3 (p < 2.2 x 10(-6)), BMPR2 (p < 2.3 x 10(-7)), BCL3/PVRL2 (flanking APOE; p < 4.4 x 10(-8)), and SMARCA4 (flanking LDLR; p < 2.5 x 10(-7)) with LDL cholesterol. Common alleles in these genes explained 6.1%-14.7% of the variance in the five lipid-related traits, and individuals at opposite tails of the additive allele score exhibited substantial differences in trait levels (e.g., > 1 mmol/L in LDL cholesterol [similar to 1 SD of the trait distribution]). These data suggest that multiple common alleles of small effect can make important contributions to individual differences in blood lipids potentially relevant to the assessment of CVD risk. These genes provide further insights into lipid metabolism and the likely effects of modifying the encoded targets therapeutically.
Skapa referenser, mejla, bekava och länka
  • Resultat 11-12 av 12
  • Föregående 1[2]
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy