SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Egberts K) "

Sökning: WFRF:(Egberts K)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Abramowski, A., et al. (författare)
  • Identification of HESS J1303-631 as a pulsar wind nebula through gamma-ray, X-ray, and radio observations
  • 2012
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 548, s. A46-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The previously unidentified very high-energy (VHE; E > 100 GeV) gamma-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H. E. S. S. Cherenkov telescope array in order to identify this object. Archival data from the XMM-Newton X-ray satellite and from the PMN radio survey are also examined. Methods. Detailed morphological and spectral studies of VHE gamma-ray emission as well as of the XMM-Newton X-ray data are performed. Radio data from the PMN survey are used as well to construct a leptonic model of the source. The gamma-ray and X-ray spectra and radio upper limit are used to construct a one zone leptonic model of the spectral energy distribution (SED). Results. Significant energy-dependent morphology of the gamma-ray source is detected with high-energy emission (E > 10 TeV) positionally coincident with the pulsar PSR J1301-6305 and lower energy emission (E < 2 TeV) extending similar to 0.4 degrees to the southeast of the pulsar. The spectrum of the VHE source can be described with a power-law with an exponential cut-off N-0 = (5.6 +/- 0.5) x 10(-12) TeV-1 cm(-2) s(-1), Gamma = 1.5 +/- 0.2) and E-cut = (7.7 +/- 2.2) TeV. The pulsar wind nebula (PWN) is also detected in X-rays, extending similar to 2-3' from the pulsar position towards the center of the gamma-ray emission region. A potential radio counterpart from the PMN survey is also discussed, showing a hint for a counterpart at the edge of the X-ray PWN trail and is taken as an upper limit in the SED. The extended X-ray PWN has an unabsorbed flux of F2-10 (keV) similar to 1.6(-0.4)(+0.2) x 10(-13) erg cm(-2)s(-1) and is detected at a significance of 6.5 sigma. The SED is well described by a one zone leptonic scenario which, with its associated caveats, predicts a very low average magnetic field for this source. Conclusions. Significant energy-dependent morphology of this source, as well as the identification of an associated X-ray PWN from XMM-Newton observations enable identification of the VHE source as an evolved PWN associated to the pulsar PSR J1301-6305. This identification is supported by the one zone leptonic model, which suggests that the energetics of the gamma-ray and X-ray radiation are such that they may have a similar origin in the pulsar nebula. However, the large discrepancy in emission region sizes and the low level of synchrotron radiation suggest a multi-population leptonic nature. The low implied magnetic field suggests that the PWN has undergone significant expansion. This would explain the low level of synchrotron radiation and the difficulty in detecting counterparts at lower energies, the reason this source was originally classified as a "dark" VHE gamma-ray source.
  •  
52.
  • Abramowski, A., et al. (författare)
  • Long-term monitoring of PKS2155-304 with ATOM and HESS:investigation of optical/gamma-ray correlations in different spectral states
  • 2014
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 571
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we report on the analysis of all the available optical and very high-energy gamma-ray (> 200 GeV) data for the BL Lac object PKS 2155-304, collected simultaneously with the ATOM and H.E.S.S. telescopes from 2007 until 2009. This study also includes X-ray (RXTE, Swift) and high-energy gamma-ray (Fermi-LAT) data. During the period analysed, the source was transitioning from its flaring to quiescent optical states, and was characterized by only moderate flux changes at different wavelengths on the timescales of days and months. A flattening of the optical continuum with an increasing optical flux can be noted in the collected dataset, but only occasionally and only at higher flux levels. We did not find any universal relation between the very high-energy gamma-ray and optical flux changes on the timescales from days and weeks up to several years. On the other hand, we noted that at higher flux levels the source can follow two distinct tracks in the optical flux-colour diagrams, which seem to be related to distinct gamma-ray states of the blazar. The obtained results therefore indicate a complex scaling between the optical and gamma-ray emission of PKS 2155 304, with different correlation patterns holding at different epochs, and a gamma-ray flux depending on the combination of an optical flux and colour rather than a flux alone.
  •  
53.
  • Abramowski, A., et al. (författare)
  • Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with HESS
  • 2013
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 550, s. A4-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extragalactic background light (EBL) is the diffuse radiation with the second highest energy density in the Universe after the cosmic microwave background. The aim of this study is the measurement of the imprint of the EBL opacity to.-rays on the spectra of the brightest extragalactic sources detected with the High Energy Stereoscopic System (H. E. S. S.). The originality of the method lies in the joint fit of the EBL optical depth and of the intrinsic spectra of the sources, assuming intrinsic smoothness. Analysis of a total of similar to 10(5) gamma-ray events enables the detection of an EBL signature at the 8.8 sigma level and constitutes the first measurement of the EBL optical depth using very-high energy (E > 100 GeV) gamma-rays. The EBL flux density is constrained over almost two decades of wavelengths [0.30 mu m, 17 mu m] and the peak value at 1.4 mu m is derived as lambda F-lambda = 15 +/- 2(stat) +/- 3(sys) nW m(-2) sr(-1).
  •  
54.
  • Abramowski, A., et al. (författare)
  • Probing the extent of the non-thermal emission from the Vela X region at TeV energies with HESS
  • 2012
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 548, s. A38-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Vela X is a region of extended radio emission in the western part of the Vela constellation: one of the nearest pulsar wind nebulae, and associated with the energetic Vela pulsar (PSR B0833-45). Extended very-high-energy (VHE) gamma-ray emission (HESS J0835-455) was discovered using the H. E. S. S. experiment in 2004. The VHE gamma-ray emission was found to be coincident with a region of X-ray emission discovered with ROSAT above 1.5 keV (the so-called Vela X cocoon): a filamentary structure extending southwest from the pulsar to the centre of Vela X. Aims. A deeper observation of the entire Vela X nebula region, also including larger offsets from the cocoon, has been performed with H. E. S. S. This re-observation was carried out in order to probe the extent of the non-thermal emission from the Vela X region at TeV energies and to investigate its spectral properties. Methods. To increase the sensitivity to the faint gamma-ray emission from the very extended Vela X region, a multivariate analysis method combining three complementary reconstruction techniques of Cherenkov-shower images is applied for the selection of gamma-ray events. The analysis is performed with the On/Off background method, which estimates the background from separate observations pointing away from Vela X; towards regions free of gamma-ray sources but with comparable observation conditions. Results. The gamma-ray surface brightness over the large Vela X region reveals that the detection of non-thermal VHE gamma-ray emission from the PWN HESS J0835-455 is statistically significant over a region of radius 1.2 degrees around the position alpha = 08(h)35(m)00(s), delta = -45 degrees 36'00 '' (J2000). The Vela X region exhibits almost uniform gamma-ray spectra over its full extent: the differential energy spectrum can be described by a power-law function with a hard spectral index Gamma = 1.32 +/- 0.06(stat) +/- 0.12(sys) and an exponential cutoff at an energy of (14.0 +/- 1.6(stat) +/- 2.6(sys)) TeV. Compared to the previous H. E. S. S. observations of Vela X the new analysis confirms the general spatial overlap of the bulk of the VHE gamma-ray emission with the X-ray cocoon, while its extent and morphology appear more consistent with the (more extended) radio emission, contradicting the simple correspondence between VHE gamma-ray and X-ray emissions. Morphological and spectral results challenge the interpretation of the origin of gamma-ray emission in the GeV and TeV ranges in the framework of current models.
  •  
55.
  • Abramowski, A., et al. (författare)
  • Probing the gamma-ray emission from HESS J1834-087 using HESS and Fermi LAT observations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 574
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E > 100 GeV) gamma-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the gamma-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. The gamma-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the gamma-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sigma(TeV) = 0.17 degrees +/- 0.01 degrees), both centered on SNR W41 and exhibiting spectra described by a power law with index Gamma(TeV) similar or equal to 2.6. The GeV source detected with Fermi LAT is extended (sigma(GeV) = 0.15 degrees +/- 0.03 degrees) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index Gamma(GeV) = 2.15 +/- 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the gamma-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to gamma-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected following a Maxwellian distribution by a pulsar with a high spin-down power (> 10(37) erg s(-1)). This additional low-energy component is not needed if we consider that the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH (1720 MHz) maser lines, and the hadronic modeling.
  •  
56.
  • Abramowski, A., et al. (författare)
  • Search for dark matter annihilation signals from the Fornax galaxy cluster with H.E.S.S.
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 750:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fornax galaxy cluster was observed with the High Energy Stereoscopic System for a total live time of 14.5 hr, searching for very high energy (VHE; E > 100GeV) gamma-rays from dark matter (DM) annihilation. No significant signal was found in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation gamma-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional gamma-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of (95% C.L.) similar to 10(-23) cm(3) s(-1), depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of (95% C.L.) similar to 10(-26) cm(3) s(-1).
  •  
57.
  • Abramowski, A., et al. (författare)
  • Search for dark matter annihilation signatures in HESS observations of dwarf spheroidal galaxies
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 90:11, s. 112012-
  • Tidskriftsartikel (refereegranskat)abstract
    • Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of nonthermal high-energy gamma-ray emission or intense star formation. Therefore they are among the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the reanalysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross section applicable to weakly interacting massive particles (WIMPs) are derived by combining the observations of the five dwarf galaxies. The combined exclusion limit depends on the WIMP mass and the best constraint is reached at 1-2 TeV masses with a cross-section upper bound of similar to 3.9 x 10(-24) cm(3) s(-1) at a 95% confidence level.
  •  
58.
  • Abramowski, A., et al. (författare)
  • Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S.
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:4, s. 041301-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray line signatures can be expected in the very-high-energy (E-gamma > 100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical gamma-ray sources that in most cases produce continuous spectra that span over several orders of magnitude in energy. Using data collected with the H. E. S. S. gamma-ray instrument, upper limits on linelike emission are obtained in the energy range between similar to 500 GeV and similar to 25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic gamma-ray line emission, flux limits of (2 x 10(-7)-2 x 10(-5)) m(-2)s(-1)sr(-1) and (1 x 10(-8)- 2 x 10(-6)) m(-2)s(-1)sr(-1) are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity- averaged DM annihilation cross section (chi chi ->gamma gamma) reach similar to 10(-27)cm(3)s(-1), based on the Einasto parametrization of the Galactic DM halo density profile. DOI: 10.1103/PhysRevLett.110.041301
  •  
59.
  • Abramowski, A., et al. (författare)
  • Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with HESS
  • 2014
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 565, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z similar to 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the HESS. instrument. The analysis of the HESS. data shows no indication of emission and yields an integral flux upper limit above similar to 380 GeV of 4.2 x 10(-12) cm(-2) s(-1) s (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the HESS. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.
  •  
60.
  • Abramowski, A., et al. (författare)
  • Search for very-high-energy gamma-ray emission from Galactic globular clusters with HESS
  • 2013
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 551, s. A26-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters' cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. These stellar clusters could also constitute a new class of sources in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime, judging from the recent detection of a signal from the direction of Terzan 5 with the H.E.S.S. telescope array. Aims. To search for VHE gamma-ray sources associated with other GCs, and to put constraints on leptonic emission models, we systematically analyzed the observations towards 15 GCs taken with the H. E. S. S. array of imaging atmospheric Cherenkov telescopes. Methods. We searched for point-like and extended VHE gamma-ray emission from each GC in our sample and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the origin of the VHE gamma-ray signal from the direction of Terzan 5, we calculated the expected gamma-ray flux from each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. Results. We did not detect significant VHE gamma-ray emission from any of the 15 GCs in either of the two analyses. Given the uncertainties related to the parameter determinations, the obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC6388 and NGC7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic scaling model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
  •  
Skapa referenser, mejla, bekava och länka
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy