SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Favre P) "

Sökning: WFRF:(Favre P)

  • Resultat 21-22 av 22
  • Föregående 12[3]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Page, Paul, et al. (författare)
  • Do Flower Color and Floral Scent of Silene Species affect Host Preference of Hadena bicruris, a Seed-Eating Pollinator, under Field Conditions?
  • 2014
  • Ingår i: PLoS ONE. - 1932-6203 .- 1932-6203. ; 9:6, s. e98755-
  • Tidskriftsartikel (refereegranskat)abstract
    • Specialization in plant-insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F-2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of a-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds alpha-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.
  •  
22.
  • van der Wiel, M. H. D., et al. (författare)
  • The ALMA-PILS survey: gas dynamics in IRAS 16293-2422 and the connection between its two protostars
  • 2019
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 626
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The majority of stars form in binary or higher order systems. The evolution of each protostar in a multiple system may start at different times and may progress differently. The Class 0 protostellar system IRAS 16293-2422 contains two protostars, "A" and "B", separated by similar to 600 au and embedded in a single, 10(4) au scale envelope. Their relative evolutionary stages have been debated. Aims. We aim to study the relation and interplay between the two protostars A and B at spatial scales of 60 au up to similar to 10(3) au. Methods. We selected molecular gas line transitions of the species CO, H2CO, HCN, CS, SiO, and C2H from the ALMA-PILS spectral imaging survey (329-363 GHz) and used them as tracers of kinematics, density, and temperature in the IRAS 16293-2422 system. The angular resolution of the PILS data set allows us to study these quantities at a resolution of 0.5 '' (60 au at the distance of the source). Results. Line-of-sight velocity maps of both optically thick and optically thin molecular lines reveal: (i) new manifestations of previously known outflows emanating from protostar A; (ii) a kinematically quiescent bridge of dust and gas spanning between the two protostars, with an inferred density between 4 x 10(4) cm(-3) and similar to 3 x 10(7) cm(-3); and (iii) a separate, straight filament seemingly connected to protostar B seen only in C2H, with a flat kinematic signature. Signs of various outflows, all emanating from source A, are evidence of high-density and warmer gas; none of them coincide spatially and kinematically with the bridge. Conclusions. We hypothesize that the bridge arc is a remnant of filamentary substructure in the protostellar envelope material from which protostellar sources A and B have formed. One particular morphological structure appears to be due to outflowing gas impacting the quiescent bridge material. The continuing lack of clear outflow signatures unambiguously associated to protostar B and the vertically extended shape derived for its disk-like structure lead us to conclude that source B may be in an earlier evolutionary stage than source A.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-22 av 22
  • Föregående 12[3]
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy