SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heikkilä Päivi) "

Sökning: WFRF:(Heikkilä Päivi)

  • Resultat 11-15 av 15
  • Föregående 1[2]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Heikkinen, Tuomas, et al. (författare)
  • Variants on the promoter region of PTEN affect breast cancer progression and patient survival
  • 2011
  • Ingår i: Breast Cancer Research. - 1465-5411 .- 1465-542X. ; 13:6, s. R130
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUTION:The PTEN gene, a regulator of the phosphatidylinositol-3-kinase (PI3K)/Akt oncogenic pathway, is mutated in various cancers and its expression has been associated with tumor progression in a dose-dependent fashion. We investigated the effect of germline variation in the promoter region of the PTEN gene on clinical characteristics and survival in breast cancer.METHODS:We screened the promoter region of the PTEN gene for germline variation in 330 familial breast cancer cases and further determined the genotypes of three detected PTEN promoter polymorphisms -903GA, -975GC, and -1026CA in a total of 2,412 breast cancer patients to evaluate the effects of the variants on tumor characteristics and disease outcome. We compared the gene expression profiles in breast cancers of 10 variant carriers and 10 matched non-carriers and performed further survival analyses based on the differentially expressed genes.RESULTS: All three promoter variants associated with worse prognosis. The Cox's regression hazard ratio for 10-year breast cancer specific survival in multivariate analysis was 2.01 (95% CI 1.17 to 3.46) P = 0.0119, and for 5-year breast cancer death or distant metastasis free survival 1.79 (95% CI 1.03 to 3.11) P = 0.0381 for the variant carriers, indicating PTEN promoter variants as an independent prognostic factor. The breast tumors from the promoter variant carriers exhibited a similar gene expression signature of 160 differentially expressed genes compared to matched non-carrier tumors. The signature further stratified patients into two groups with different recurrence free survival in independent breast cancer gene expression data sets.CONCLUSIONS:Inherited variation in the PTEN promoter region affects the tumor progression and gene expression profile in breast cancer. Further studies are warranted to establish PTEN promoter variants as clinical markers for prognosis in breast cancer.
  •  
12.
  • Heinonen, Mira, et al. (författare)
  • Prognostic role of HuR in hereditary breast cancer
  • 2007
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 13:23, s. 6959-6963
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: HuR is an mRNA-binding protein that enhances the stability of certain transcripts and can regulate their translation. Elevated cytoplasmic expression of HuR protein has been linked to carcinogenesis and is associated with reduced survival in breast, ovarian, and gastric adenocarcinomas. Experimental Design: Here, we have explored the relevance of HuR in familial breast cancer. Tumor samples were collected from patients with identified BRCA1 (n = 51) or BRCA2 (n = 47) mutations or familial non-BRCA1/2 cases (n = 525), and analyzed by immunohistochemistry. Results: Among familial non-BRCAI/2 breast cancer patients, cytoplasmic HuR protein expression was present in 39.4% of the cases and was associated with estrogen receptor negativity, progesterone receptor negativity, p53 positivity, high tumor grade, and ductal type of the tumor. In multivariate analysis, cytoplasmic HuR expression was an independent marker of reduced survival in the non-BRCAI/2 group along with tumor size >2 cm, lymph node metastasis, and high histologic grade. In patients with BRCA1 or BRCA2 mutations, cytoplasmic HuR expression was more frequent (62.7% for BRCA1 and 61.7% for BRCA2) than in the non-BRCA1/ 2 group, but in BRCA -mutated subgroups cytoplasmic HuR expression did not associate with survival. Conclusions: Our results show that HuR is an important prognostic factor in familial breast cancer patients and may contribute to carcinogenesis in this disease.
  •  
13.
  • Kainu, T, et al. (författare)
  • Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus
  • 2000
  • Ingår i: Proceedings of the National Academy of Sciences. - National Acad Sciences. - 1091-6490. ; 97:17, s. 9603-9608
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant proportion of familial breast cancers cannot be explained by mutations in the BRCA1 or BRCA2 genes. We applied a strategy to identify predisposition loci for breast cancer by using mathematical models to identify early somatic genetic deletions in tumor tissues followed by targeted linkage analysis. Comparative genomic hybridization was used to study 61 breast tumors from 37 breast cancer families with no identified BRCA1 or BRCA2 mutations. Branching and phylogenetic tree models predicted that loss of 13q was one of the earliest genetic events in hereditary cancers. In a Swedish family with five breast cancer cases, all analyzed tumors showed distinct 13q deletions, with the minimal region of loss at 13q21-q22. Genotyping revealed segregation of a shared 13q21 germ-line haplotype in the family. Targeted linkage analysis was carried out in a set of 77 Finnish, Icelandic, and Swedish breast cancer families with no detected BRCA1 and BRCA2 mutations. A maximum parametric two-point logarithm of odds score of 2.76 was obtained for a marker at 13q21 (D13S1308, theta = 0.10). The multipoint logarithm of odds score under heterogeneity was 3.46. The results were further evaluated by simulation to assess the probability of obtaining significant evidence in favor of linkage by chance as well as to take into account the possible influence of the BRCA2 locus, located at a recombination fraction of 0.25 from the new locus. The simulation substantiated the evidence of linkage at D13S1308 (P < 0.0017). The results warrant studies of this putative breast cancer predisposition locus in other populations.
14.
  • Peurala, Hanna, et al. (författare)
  • MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer
  • 2011
  • Ingår i: PLoS ONE. - 1932-6203 .- 1932-6203. ; 6:11, s. e26122
  • Tidskriftsartikel (refereegranskat)abstract
    • MiR-34a acts as a candidate tumour suppressor gene, and its expression is reduced in several cancer types. We aimed to study miR-34a expression in breast cancer and its correlation with tumour characteristics and clinical outcome, and regulatory links with other genes. We analysed miR-34a expression in 1,172 breast tumours on TMAs. 25% of the tumours showed high, 43% medium and 32% low expression of miR-34a. High miR-34a expression associated with poor prognostic factors for breast cancer: positive nodal status (p = 0.006), high tumour grade (p&lt;0.0001), ER-negativity (p = 0.0002), HER2-positivity (p = 0.0002), high proliferation rate (p&lt;0.0001), p53-positivity (p&lt;0.0001), high cyclin E (p&lt;0.0001) and γH2AX (p&lt;0.0001). However, multivariate analysis adjusting for conventional prognostic factors indicated that high miR-34a expression in fact associated with a lower risk of recurrence or death from breast cancer (HR = 0.63, 95% CI = 0.41-0.96, p = 0.031). Gene expression analysis by differential miR-34a expression revealed an expression signature with an effect on both the 5-year and 10-year survival of the patients (p&lt;0.001). Functional genomic analysis highlighted a novel regulatory role of the transcription factor MAZ, apart from the known control by p53, on the expression of miR-34a and a number of miR-34a targets. Our findings suggest that while miR-34a expression activation is a marker of aggressive breast tumour phenotype it exerts an independent effect for a lower risk of recurrence or death from breast cancer. We also present an expression signature of 190 genes associated with miR-34a expression. Our analysis for regulatory loops suggest that MAZ and p53 transcription factors co-operate in modulating miR-34a, as well as miR-34a targets involved in several cellular pathways. Taken together, these results suggest that the network of genes co-regulated with and targeted by miR-34a form a group of down-stream effectors that maybe of use in predicting clinical outcome, and that highlight novel regulatory mechanisms in breast cancer.
15.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-15 av 15
  • Föregående 1[2]
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy