SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jansson Johan) "

Sökning: WFRF:(Jansson Johan)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Hoffman, Johan, et al. (författare)
  • Towards a parameter-free method for high Reynolds number turbulent flow simulation based on adaptive finite element approximation
  • 2015
  • Ingår i: Computer Methods in Applied Mechanics and Engineering. - : Elsevier. - 0045-7825 .- 1879-2138. ; 288, s. 60-74
  • Tidskriftsartikel (refereegranskat)abstract
    • We present work towards a parameter-free method for turbulent flow simulation based on adaptive finite element approximation of the Navier-Stokes equations at high Reynolds numbers. In this model, viscous dissipation is assumed to be dominated by turbulent dissipation proportional to the residual of the equations, and skin friction at solid walls is assumed to be negligible compared to inertial effects. The result is a computational model without empirical data, where the only parameter is the local size of the finite element mesh. Under adaptive refinement of the mesh based on a posteriori error estimation, output quantities of interest in the form of functionals of the finite element solution converge to become independent of the mesh resolution, and thus the resulting method has no adjustable parameters. No ad hoc design of the mesh is needed, instead the mesh is optimised based on solution features, in particular no bounder layer mesh is needed. We connect the computational method to the mathematical concept of a dissipative weak solution of the Euler equations, as a model of high Reynolds number turbulent flow, and we highlight a number of benchmark problems for which the method is validated. 
  •  
22.
  •  
23.
  • Hoffman, Johan, et al. (författare)
  • Unicorn : Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry
  • 2011
  • Rapport (övrigt vetenskapligt)abstract
    • We present a framework for adaptive finite element computation of turbulent flow and fluid-structure interaction, with focus on general algorithms that allow for complex geometry and deforming domains. We give basic models and finite element discretization methods, adaptive algorithms and strategies for e cient parallel implementation. To illustrate the capabilities of the computational framework, we show a number of application examples from aerodynamics, aero-acoustics, biomedicine and geophysics. The computational tools are free to download open source as Unicorn, and as a high performance branch of the finite element problem solving environment DOLFIN, both part of the FEniCS project
  •  
24.
  • Hoffman, Johan, et al. (författare)
  • Unicorn : Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry
  • 2013
  • Ingår i: Computers & Fluids. - 0045-7930 .- 1879-0747. ; 80:SI, s. 310-319
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a framework for adaptive finite element computation of turbulent flow and fluid structure interaction, with focus on general algorithms that allow for complex geometry and deforming domains. We give basic models and finite element discretization methods, adaptive algorithms and strategies for efficient parallel implementation. To illustrate the capabilities of the computational framework, we show a number of application examples from aerodynamics, aero-acoustics, biomedicine and geophysics. The computational tools are free to download open source as Unicorn, and as a high performance branch of the finite element problem solving environment DOLFIN, both part of the FEniCS project.
  •  
25.
  •  
26.
  • Jansson, Johan, 1978-, et al. (författare)
  • Simulation of 3D unsteady incompressible flow past a NACA 0012 wing section
  • 2012
  • Rapport (övrigt vetenskapligt)abstract
    • We present computational simulations of three-dimensional unsteady high Reynolds number incompressible flow past a NACA 0012 wing profile, for a range of angles of attack, from low lift through stall. A stabilized finite element method is used, referred to as General Galerkin (G2), with adaptive mesh refinement with respect to the error in target output, such as aerodynamic forces. Computational predictions of aerodynamic forces are validated against experimental data.
  •  
27.
  •  
28.
  • Jansson, Johan, 1978-, et al. (författare)
  • Time-resolved Adaptive Direct FEM Simulation of High-lift Aircraft Configurations : Chapter in "Numerical Simulation of the Aerodynamics of High-Lift Configurations'", Springer
  • 2018
  • Ingår i: Numerical Simulation of the Aerodynamics of High-Lift Configurations. - : Springer. - 9783319621364 - 9783319621357 ; , s. 67-92
  • Bokkapitel (refereegranskat)abstract
    • We present an adaptive finite element method for time-resolved simulation of aerodynamics without any turbulence-model parameters, which is applied to a benchmark problem from the HiLiftPW-3workshop to compute the flowpast a JAXA Standard Model (JSM) aircraft model at realistic Reynolds numbers. The mesh is automatically constructed by the method as part of an adaptive algorithm based on a posteriori error estimation using adjoint techniques. No explicit turbulence model is used, and the effect of unresolved turbulent boundary layers is modeled by a simple parametrization of the wall shear stress in terms of a skin friction. In the case of very high Reynolds numbers, we approximate the small skin friction by zero skin friction, corresponding to a free-slip boundary condition, which results in a computational model without any model parameter to be tuned, and without the need for costly boundary-layer resolution. We introduce a numerical tripping-noise term to act as a seed for growth of perturbations; the results support that this triggers the correct physical separation at stall and has no significant pre-stall effect. We show that the methodology quantitavely and qualitatively captures the main features of the JSM experiment-aerodynamic forces and the stall mechanism-with a much coarser mesh resolution and lower computational cost than the state-of-the-art methods in the field, with convergence under mesh refinement by the adaptive method. Thus, the simulation methodology appears to be a possible answer to the challenge of reliably predicting turbulent-separated flows for a complete air vehicle.
  •  
29.
  •  
30.
  • Jansson, Niclas, et al. (författare)
  • Framework For Massively Parallel Adaptive Finite Element Computational Fluid Dynamics On Tetrahedral Meshes
  • 2012
  • Ingår i: SIAM Journal on Scientific Computing. - 1064-8275 .- 1095-7197. ; 34:1, s. C24-C42
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe a general adaptive finite element framework for unstructured tetrahedral meshes without hanging nodes suitable for large scale parallel computations. Our framework is designed to scale linearly to several thousands of processors, using fully distributed and efficient algorithms. The key components of our implementation, local mesh refinement and load balancing algorithms, are described in detail. Finally, we present a theoretical and experimental performance study of our framework, used in a large scale computational fluid dynamics computation, and we compare scaling and complexity of different algorithms on different massively parallel architectures.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (298)
konferensbidrag (123)
rapport (43)
bokkapitel (42)
doktorsavhandling (32)
annan publikation (31)
visa fler...
licentiatavhandling (6)
forskningsöversikt (5)
samlingsverk (redaktörskap) (4)
recension (3)
bok (2)
proceedings (redaktörskap) (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (409)
övrigt vetenskapligt (150)
populärvet., debatt m.m. (32)
Författare/redaktör
Jansson, Johan (120)
Hoffman, Johan (49)
Jansson, Johan, 1973 ... (43)
Jansson, Niclas (29)
Fredén Jansson, Karl ... (24)
Jansson, Johan, 1974 ... (22)
visa fler...
Jansson, Robert (21)
Håkansson, Bo, 1953 (21)
Jansson, Jan Håkan (20)
Reinfeldt, Sabine, 1 ... (20)
Jansson, John-Olov, ... (19)
Eeg-Olofsson, Måns, ... (19)
Nilsson, Jonas (18)
Hoffman, Johan, 1974 ... (17)
Ohlsson, Claes, 1965 (15)
Jansson, Patrik, 197 ... (14)
Loos, Ruth J F (14)
Kleman, Johan (14)
Psaty, Bruce M. (13)
Wareham, Nicholas J (13)
Rigato, Cristina, 19 ... (13)
Jansson, M (12)
Van Duijn, Cornelia ... (12)
Jansson, André, 1972 ... (12)
Boström, Lars (12)
Svensson, Johan, 196 ... (12)
Anderson, Johan (12)
Harris, Tamara B (12)
Jeuring, Johan, 1965 (12)
Vilela de Abreu, Rod ... (12)
Jansson, Johan, 1978 ... (12)
Leoni, Massimiliano (12)
Gudnason, Vilmundur (11)
Hofman, Albert (11)
Hu, Frank B. (11)
Barroso, Ines (11)
Eriksson, Johan G. (11)
Morris, Andrew P (11)
Feitosa, Mary F. (11)
Jansson, Gunnar (11)
Nordlund, Annika (11)
Borecki, Ingrid B. (11)
Herlitz, Johan, 1949 (10)
Jansson, Mats (10)
Ridker, Paul M. (10)
Salomaa, Veikko (10)
Höglund, Johan (10)
Wilson, James F. (10)
Jansson, JH (10)
Jansson, Desirée (10)
visa färre...
Lärosäte
Uppsala universitet (113)
Kungliga Tekniska Högskolan (107)
Umeå universitet (98)
Göteborgs universitet (77)
Lunds universitet (76)
Chalmers tekniska högskola (56)
visa fler...
Sveriges Lantbruksuniversitet (33)
Stockholms universitet (28)
RISE (25)
Linköpings universitet (22)
Örebro universitet (17)
Karolinska Institutet (15)
Karlstads universitet (14)
Mälardalens högskola (12)
Linnéuniversitetet (9)
Luleå tekniska universitet (8)
Högskolan i Borås (7)
Jönköping University (4)
Högskolan i Skövde (4)
Södertörns högskola (4)
VTI - Statens väg- och transportforskningsinstitut (4)
Högskolan Dalarna (4)
Malmö universitet (3)
Högskolan i Halmstad (2)
Högskolan i Gävle (2)
Högskolan Väst (1)
Naturvårdsverket (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (529)
Svenska (60)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (153)
Samhällsvetenskap (150)
Medicin och hälsovetenskap (124)
Teknik (76)
Lantbruksvetenskap (30)
Humaniora (9)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy