SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Justice Anne E) "

Sökning: WFRF:(Justice Anne E)

  • Resultat 21-26 av 26
  • Föregående 12[3]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Smith, Caren E., et al. (författare)
  • Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent
  • Ingår i: Molecular Nutrition and Food Research. - : John Wiley and Sons Inc.. - 1613-4125. ; 62:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Scope: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. Methods and results: A genome-wide interaction study to discover genetic variants that account for variation in BMI in the context of low-fat, high-fat and total dairy intake in cross-sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta-analyzed. Twenty-six genetic variants reached the selected significance threshold (p-interaction <10−7), and six independent variants (LINC01512-rs7751666, PALM2/AKAP2-rs914359, ACTA2-rs1388, PPP1R12A-rs7961195, LINC00333-rs9635058, AC098847.1-rs1791355) were evaluated meta-analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3’ of LINC00333) was replicated (p-interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p-interaction = 7.36 × 10−8) such that each serving of low-fat dairy was associated with 0.225 kg m−2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2-rs1388) approached interaction replication significance for low-fat dairy exposure. Conclusion: Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight.
  •  
22.
  • Hägg, Sara, et al. (författare)
  • Gene-based meta-analysis of genome-wide association studies implicates new loci involved in obesity
  • 2015
  • Ingår i: ; 24:23, s. 6849-6860
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, genome-wide association studies (GWASs) have identified >100 loci with single variants associated with body mass index (BMI). This approach may miss loci with high allelic heterogeneity; therefore, the aim of the present study was to use gene-based meta-analysis to identify regions with high allelic heterogeneity to discover additional obesity susceptibility loci. We included GWAS data from 123 865 individuals of European descent from 46 cohorts in Stage 1 and Metabochip data from additional 103 046 individuals from 43 cohorts in Stage 2, all within the Genetic Investigation of ANthropometric Traits (GIANT) consortium. Each cohort was tested for association between ∼2.4 million (Stage 1) or ∼200 000 (Stage 2) imputed or genotyped single variants and BMI, and summary statistics were subsequently meta-analyzed in 17 941 genes. We used the 'VErsatile Gene-based Association Study' (VEGAS) approach to assign variants to genes and to calculate gene-based P-values based on simulations. The VEGAS method was applied to each cohort separately before a gene-based meta-analysis was performed. In Stage 1, two known (FTO and TMEM18) and six novel (PEX2, MTFR2, SSFA2, IARS2, CEP295 and TXNDC12) loci were associated with BMI (P < 2.8 × 10(-6) for 17 941 gene tests). We confirmed all loci, and six of them were gene-wide significant in Stage 2 alone. We provide biological support for the loci by pathway, expression and methylation analyses. Our results indicate that gene-based meta-analysis of GWAS provides a useful strategy to find loci of interest that were not identified in standard single-marker analyses due to high allelic heterogeneity.
  •  
23.
  • Shungin, Dmitry, et al. (författare)
  • Ranking and characterization of established BMI and lipid associated loci as candidates for gene-environment interactions
  • 2017
  • Ingår i: PLoS Genetics. - : Public Library Science. - 1553-7390 .- 1553-7404. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (GxE) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (P-v), GxE interaction effects (with smoking and physical activity), and marginal genetic effects (P-m). Correlations between P-v and P-m were stronger for SNPs with established marginal effects (Spearman's rho = 0.401 for triglycerides, and rho = 0.236 for BMI) compared to all SNPs. When P-v and P-m were compared for all pruned SNPs, only BMI was statistically significant (Spearman's rho = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the P-v distribution (P-binomial < 0.05). SNPs from the top 1% of the P-m distribution for BMI had more significant P-v values (Pmann-Whitney = 1.46x10(-5)), and the odds ratio of SNPs with nominally significant (< 0.05) P-m and P-v was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant GxE interaction P-values (Pint < 0.05) were enriched with nominally significant P-v values (P-binomial = 8.63x10(-9) and 8.52x10(-7) for SNP x smoking and SNP x physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for GxE, and variance-based prioritization can be used to identify them.
  •  
24.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
25.
  • Merino, Jordi, et al. (författare)
  • Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184. ; 24:12, s. 1920-1932
  • Tidskriftsartikel (refereegranskat)abstract
    • Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10−6) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
  •  
26.
  • Winkler, Thomas W., et al. (författare)
  • Quality control and conduct of genome-wide association meta-analyses
  • 2014
  • Ingår i: Nature Protocols. - 1754-2189 .- 1750-2799. ; 9:5, s. 1192-1212
  • Tidskriftsartikel (refereegranskat)abstract
    • Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta- level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-26 av 26
  • Föregående 12[3]
Typ av publikation
tidskriftsartikel (26)
Typ av innehåll
refereegranskat (26)
Författare/redaktör
Justice, Anne E. (35)
Loos, Ruth J F (29)
Wareham, Nicholas J (27)
North, Kari E (27)
Esko, Tonu (27)
Winkler, Thomas W. (27)
visa fler...
Chasman, Daniel I. (26)
Feitosa, Mary F. (26)
Uitterlinden, Andre ... (25)
Ridker, Paul M. (25)
Mohlke, Karen L (25)
Scott, Robert A (25)
Jackson, Anne U. (25)
McCarthy, Mark I (24)
Morris, Andrew P (24)
Hirschhorn, Joel N. (24)
Luan, Jian'an (24)
Franks, Paul W (23)
Raitakari, Olli T (23)
Cupples, L. Adrienne (23)
Lindgren, Cecilia M. (23)
Chambers, John C. (23)
Kooner, Jaspal S. (23)
Collins, Francis S. (23)
Harris, Tamara B (22)
Lakka, Timo A. (22)
Stancáková, Alena (21)
Rose, Lynda M (21)
Langenberg, Claudia (21)
Heid, Iris M (21)
Van Duijn, Cornelia ... (20)
Kuusisto, Johanna (20)
Laakso, Markku (20)
Boehnke, Michael (20)
Hayward, Caroline (20)
Stringham, Heather M ... (20)
Heard-Costa, Nancy L ... (20)
Rudan, Igor (19)
Esko, T (19)
Zhao, Jing Hua (19)
Ong, Ken K. (19)
Rauramaa, Rainer (19)
Metspalu, Andres (18)
Wilson, James F. (18)
Perola, Markus (18)
O'Connell, Jeffrey R (18)
Polašek, Ozren (18)
Mahajan, Anubha (18)
Zhang, Weihua (18)
Oldehinkel, Albertin ... (18)
visa färre...
Lärosäte
Lunds universitet (17)
Umeå universitet (12)
Göteborgs universitet (8)
Uppsala universitet (6)
Karolinska Institutet (5)
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (24)
Naturvetenskap (5)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy