SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Milani Lili) "

Sökning: WFRF:(Milani Lili)

  • Resultat 51-58 av 58
  • Föregående 12345[6]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Turcot, Valérie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
52.
  •  
53.
  • Wahl, Simone, et al. (författare)
  • Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity
  • 2017
  • Ingår i: Nature. - NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7635, s. 81-
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type (2) diabetes, cardiovascular disease and related metabolic and inflammatory disturbances(1,2). Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation(3-6), a key regulator of gene expression and molecular phenotype(7). Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 x 10(-7), range P = 9.2 x 10(-8) to 6.0 x 10(-46); n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 x 10(-6), range P = 5.5 x 10(-6) to 6.1 x 10(-35), n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 x 10(-54)). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
  •  
54.
  • Winkler, Thomas W., et al. (författare)
  • The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape A Large-Scale Genome-Wide Interaction Study
  • 2015
  • Ingår i: PLoS Genetics. - 1553-7390 .- 1553-7404. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men <= 50y, men > 50y, women <= 50y, women > 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR< 5%) age-specific effects, of which 11 had larger effects in younger (< 50y) than in older adults (>= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
55.
  • Wood, Andrew R, et al. (författare)
  • Defining the role of common variation in the genomic and biological architecture of adult human height
  • 2014
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 46:11, s. 1173-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
56.
  • Yang, Jian, et al. (författare)
  • Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index
  • 2015
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 47:10, s. 1114-1120
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a method (GREML-LDMS) to estimate heritability for human complex traits in unrelated individuals using whole-genome sequencing data. We demonstrate using simulations based on whole-genome sequencing data that similar to 97% and similar to 68% of variation at common and rare variants, respectively, can be captured by imputation. Using the GREML-LDMS method, we estimate from 44,126 unrelated individuals that all similar to 17 million imputed variants explain 56% (standard error (s.e.) = 2.3%) of variance for height and 27% (s.e. = 2.5%) of variance for body mass index (BMI), and we find evidence that height- and BMI-associated variants have been under natural selection. Considering the imperfect tagging of imputation and potential overestimation of heritability from previous family-based studies, heritability is likely to be 60-70% for height and 30-40% for BMI. Therefore, the missing heritability is small for both traits. For further discovery of genes associated with complex traits, a study design with SNP arrays followed by imputation is more cost-effective than whole-genome sequencing at current prices.
  •  
57.
  • Yang, Jian, et al. (författare)
  • Genome-wide genetic homogeneity between sexes and populations for human height and body mass index
  • 2015
  • Ingår i: Human Molecular Genetics. - 0964-6906 .- 1460-2083. ; 24:25, s. 7445-7449
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex-specific genetic effects have been proposed to be an important source of variation for human complex traits. Here we use two distinct genome-wide methods to estimate the autosomal genetic correlation (rg) between men and women for human height and body mass index (BMI), using individual-level (n = ∼44 000) and summary-level (n = ∼133 000) data from genome-wide association studies. Results are consistent and show that the between-sex genetic correlation is not significantly different from unity for both traits. In contrast, we find evidence of genetic heterogeneity between sexes for waist-hip ratio (rg = ∼0.7) and between populations for BMI (rg = ∼0.9 between Europe and the USA) but not for height. The lack of evidence for substantial genetic heterogeneity for body size is consistent with empirical findings across traits and species.
  •  
58.
  • Zhou, Yitian, et al. (författare)
  • Global genetic diversity of human apolipoproteins and effects on cardiovascular disease risk
  • 2018
  • Ingår i: Journal of Lipid Research. - AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0022-2275 .- 1539-7262. ; 59:10, s. 1987-2000
  • Tidskriftsartikel (refereegranskat)abstract
    • Abnormal plasma apolipoprotein levels are consistently implicated in CVD risk. Although 30% to 60% of their interindividual variability is genetic, common genetic variants explain only 10% to 20% of these differences. Rare genetic variants may be major sources of the missing heritability, yet quantitative evaluations of their contribution to phenotypic variability are lacking. Here, we analyzed whole-genome and whole-exome sequencing data from 138,632 individuals across seven major human populations to present a systematic overview of genetic apolipoprotein variability. We provide population-specific frequencies of 38 clinically important apolipoprotein alleles and identify further 6,875 genetic variants, 33% of which are novel and 98.7% of which are rare with minor allele frequencies <1%. We predicted the functional impact of rare variants and found that their relative importance differed drastically between genes and among ethnicities. Importantly, we validated the clinical relevance of multiple variants with predicted effects by leveraging association data from the CARDIoGRAM (Coronary Artery Disease Genomewide Replication and Meta-analysis) and Global Lipids Genetics consortia. Overall, we provide a consolidated overview of population-specific apolipoprotein genetics as a valuable data resource for scientists and clinicians, estimate the importance of rare genetic variants for the missing heritability of apolipoprotein-associated disease traits, and pinpoint multiple novel apolipoprotein variants with putative population-specific impacts on serum lipid levels.
Skapa referenser, mejla, bekava och länka
  • Resultat 51-58 av 58
  • Föregående 12345[6]
Åtkomst
fritt online (19)
Typ av publikation
tidskriftsartikel (57)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (55)
övrigt vetenskapligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Esko, Tonu (37)
Metspalu, Andres (35)
Gieger, Christian (24)
Salomaa, Veikko (22)
Hayward, Caroline (22)
Uitterlinden, Andre ... (20)
visa fler...
Langenberg, Claudia (20)
Scott, Robert A (20)
Peters, Annette (20)
Jackson, Anne U. (20)
Magnusson, Patrik K ... (19)
Boehnke, Michael (19)
Harris, Tamara B. (19)
Hofman, Albert, (18)
Montgomery, Grant W. ... (18)
Kuusisto, Johanna, (18)
Raitakari, Olli T (17)
Gudnason, Vilmundur, (17)
Wareham, Nicholas J. (17)
Laakso, Markku, (17)
Strauch, Konstantin (17)
Rudan, Igor (17)
Froguel, Philippe, (16)
Amin, Najaf, (16)
Stancáková, Alena, (16)
Chasman, Daniel I., (16)
Luan, Jian'an (16)
Feitosa, Mary F. (16)
Nolte, Ilja M (16)
Teumer, Alexander, (15)
Van Duijn, Cornelia ... (15)
Deary, Ian J., (15)
Syvänen, Ann-Christi ... (15)
Rose, Lynda M (15)
Samani, Nilesh J. (15)
Kutalik, Zoltan (15)
Zhao, Jing Hua (15)
Morris, Andrew P. (15)
Elliott, Paul (15)
Collins, Francis S. (15)
van der Harst, Pim (15)
Lind, Lars, (14)
Ridker, Paul M., (14)
Mangino, Massimo (14)
Polasek, Ozren (14)
Meitinger, Thomas (14)
Stringham, Heather M ... (14)
Lehtimaki, Terho (14)
Boerwinkle, Eric (14)
Stefansson, Kari (14)
visa färre...
Lärosäte
Uppsala universitet (43)
Karolinska Institutet (38)
Umeå universitet (23)
Lunds universitet (19)
Göteborgs universitet (14)
Högskolan Dalarna (3)
visa fler...
Kungliga Tekniska Högskolan (2)
Stockholms universitet (2)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (58)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (56)
Naturvetenskap (9)
Teknik (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy