SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nickerson Deborah A.) "

Sökning: WFRF:(Nickerson Deborah A.)

  • Resultat 11-18 av 18
  • Föregående 1[2]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Ng, Bobby G, et al. (författare)
  • ALG1-CDG: Clinical and Molecular Characterization of 39 Unreported Patients.
  • 2016
  • Ingår i: Human Mutation. - : John Wiley and Sons. - 1059-7794.
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over one hundred genes leading to impaired protein or lipid glycosylation. ALG1 encodes a β1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol-lipid linked oligosaccharide intermediate (DLO) required for proper N-linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To date thirteen mutations in eighteen patients from fourteen families have been described with varying degrees of clinical severity. We identified and characterized thirty-nine previously unreported cases of ALG1-CDG from thirty-two families and add twenty-six new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2 , was seen in all twenty-seven patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder. This article is protected by copyright. All rights reserved.
  •  
12.
  • Tajuddin, Salman M., et al. (författare)
  • Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases
  • 2016
  • Ingår i: American Journal of Human Genetics. - 0002-9297 .- 1537-6605. ; 99:1, s. 22-39
  • Tidskriftsartikel (refereegranskat)abstract
    • White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of similar to 157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3 ' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.
  •  
13.
  • Postmus, Iris, et al. (författare)
  • Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.
  • 2014
  • Ingår i: Nature communications. - : Nature Publishing Group. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.
  •  
14.
  • Crosby, Jacy, et al. (författare)
  • Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease
  • 2014
  • Ingår i: New England Journal of Medicine. - : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 371:1, s. 22-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G -> A and IVS3+1G -> T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1x10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P = 8x10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P = 4x10(-6)). Conclusions Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.)
  •  
15.
  • Ng, Bobby G., et al. (författare)
  • DPAGT1 deficiency with encephalopathy (DPAGT1-CDG) : Clinical and genetic description of 11 new patients
  • 2018
  • Ingår i: JIMD Reports. - : Springer. - 2192-8304 .- 2192-8312. ; 44, s. 85-92
  • Bokkapitel (refereegranskat)abstract
    • Pathogenic mutations in DPAGT1 cause a rare type of a congenital disorder of glycosylation termed DPAGT1-CDG or, alternatively, a milder version with only myasthenia known as DPAGT1-CMS. Fourteen disease-causing mutations in 28 patients from 10 families have previously been reported to cause the systemic form, DPAGT1-CDG. We here report on another 11 patients from 8 families and add 10 new mutations. Most patients have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. We also present data on three affected females that are young adults and have a somewhat milder, stable disease. Our findings expand both the molecular and clinical knowledge of previously published data but also widen the phenotypic spectrum of DPAGT1-CDG.
  •  
16.
  • McCarthy, Shane, et al. (författare)
  • A reference panel of 64,976 haplotypes for genotype imputation
  • 2016
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036. ; 48:10, s. 1279-1283
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies, and it can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.
  •  
17.
  • Peloso, Gina M., et al. (författare)
  • Association of Exome Sequences with Cardiovascular Traits among Blacks in the Jackson Heart Study
  • 2016
  • Ingår i: Circulation: Cardiovascular Genetics. - : American Heart Association. - 1942-325X. ; 9:4, s. 368-374
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-The correlation of null alleles with human phenotypes can provide insight into gene function in humans. In individuals of African ancestry, we set out to identify null and damaging missense variants, and test these variants for association with a range of cardiovascular phenotypes. Methods and Results-We performed whole-exome sequencing in 3223 black individuals from the Jackson Heart Study and found a total of 729 666 variant sites with minor allele frequency <5%, including 17 263 null variants and 49 929 missense variants predicted to be damaging by in silico algorithms. We tested null and damaging missense variants within each gene for association with 36 cardiovascular traits. We found 3 associations that met our prespecified level of significance (α=1.1×10-7). Null and damaging missense variants in PCSK9 were associated with 36 mg/dL lower low-density lipoprotein cholesterol (P=3×10-21). Three individuals in their 50s with complete PCSK9 deficiency (each compound heterozygote for PCSK9 p.Y142X and p.C679X) were identified, with one having a coronary artery calcification score in the 83rd percentile despite a low-density lipoprotein cholesterol of 32 mg/dL. A damaging missense variant in HBQ1 (p.G52A) was associated with a 2 pg/cell lower mean corpuscular hemoglobin (P=9×10-13) and rare damaging missense variants in VPS13A with higher red blood cell distribution width (P=9.9×10-8). Conclusions-A limited number of null/damaging alleles with a large effect on cardiovascular traits were detectable in ≈3000 black individuals.
  •  
18.
  • Schick, Ursula M, et al. (författare)
  • Association of exome sequences with plasma C-reactive protein levels in >9000 participants.
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906. ; 24:2, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • C-reactive protein (CRP) concentration is a heritable systemic marker of inflammation that is associated with cardiovascular disease risk. Genome-wide association studies have identified CRP-associated common variants associated in ∼25 genes. Our aims were to apply exome sequencing to (1) assess whether the candidate loci contain rare coding variants associated with CRP levels and (2) perform an exome-wide search for rare variants in novel genes associated with CRP levels. We exome-sequenced 6050 European-Americans (EAs) and 3109 African-Americans (AAs) from the NHLBI-ESP and the CHARGE consortia, and performed association tests of sequence data with measured CRP levels. In single-variant tests across candidate loci, a novel rare (minor allele frequency = 0.16%) CRP-coding variant (rs77832441-A; p.Thr59Met) was associated with 53% lower mean CRP levels (P = 2.9 × 10(-6)). We replicated the association of rs77832441 in an exome array analysis of 11 414 EAs (P = 3.0 × 10(-15)). Despite a strong effect on CRP levels, rs77832441 was not associated with inflammation-related phenotypes including coronary heart disease. We also found evidence for an AA-specific association of APOE-ε2 rs7214 with higher CRP levels. At the exome-wide significance level (P < 5.0 × 10(-8)), we confirmed associations for reported common variants of HNF1A, CRP, IL6R and TOMM40-APOE. In gene-based tests, a burden of rare/lower frequency variation in CRP in EAs (P ≤ 6.8 × 10(-4)) and in retinoic acid receptor-related orphan receptor α (RORA) in AAs (P = 1.7 × 10(-3)) were associated with CRP levels at the candidate gene level (P < 2.0 × 10(-3)). This inquiry did not elucidate novel genes, but instead demonstrated that variants distributed across the allele frequency spectrum within candidate genes contribute to CRP levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-18 av 18
  • Föregående 1[2]

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy