SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schumann Gunter) "

Sökning: WFRF:(Schumann Gunter)

  • Resultat 11-20 av 22
  • Föregående 1[2]3Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Sonderby, Ida E., et al. (författare)
  • Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
  • 2020
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:3, s. 584-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
  •  
12.
  • Tay, Nicole, et al. (författare)
  • Allele-Specific Methylation of SPDEF : A Novel Moderator of Psychosocial Stress and Substance Abuse
  • 2019
  • Ingår i: ; 176:2, s. 146-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Psychosocial stress is a key risk factor for substance abuse among adolescents. Recently, epigenetic processes such as DNA methylation have emerged as potential mechanisms that could mediate this relationship. The authors conducted a genome-wide methylation analysis to investigate whether differentially methylated regions are associated with psychosocial stress in an adolescent population.Methods: A methylome-wide analysis of differentially methylated regions was used to examine a sample of 1,287 14-year-old adolescents (50.7% of them female) from the European IMAGEN study. The Illumina 450k array was used to assess DNA methylation, pyrosequencing was used for technical replication, and linear regression analyses were used to identify associations with psychosocial stress and substance use (alcohol and tobacco). Findings were replicated by pyrosequencing a test sample of 413 participants from the IMAGEN study.Results: Hypermethylation in the sterile alpha motif/pointed domain containing the ETS transcription factor (SPDEF) gene locus was associated with a greater number of stressful life events in an allele-dependent way. Among individuals with the minor G-allele, SPDEF methylation moderated the association between psychosocial stress and substance abuse. SPDEF methylation interacted with lifetime stress in gray matter volume in the right cuneus, which in turn was associated with the frequency of alcohol and tobacco use. SPDEF was involved in the regulation of trans-genes linked to substance use.Conclusions: Taken together, the study findings describe a novel epigenetic mechanism that helps explain how psychosocial stress exposure influences adolescent substance abuse.
  •  
13.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
14.
  • van der Meer, Dennis, et al. (författare)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • Ingår i: JAMA psychiatry. - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
  •  
15.
  • Wittchen, Hans-Ulrich, et al. (författare)
  • The need for a behavioural science focus in research on mental health and mental disorders
  • 2014
  • Ingår i: International Journal of Methods in Psychiatric Research. - : Wiley-Blackwell. - 1049-8931 .- 1557-0657. ; 23, s. 28-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychology as a science offers an enormous diversity of theories, principles, and methodological approaches to understand mental health, abnormal functions and behaviours and mental disorders. A selected overview of the scope, current topics as well as strength and gaps in Psychological Science may help to depict the advances needed to inform future research agendas specifically on mental health and mental disorders. From an integrative psychological perspective, most maladaptive health behaviours and mental disorders can be conceptualized as the result of developmental dysfunctions of psychological functions and processes as well as neurobiological and genetic processes that interact with the environment. The paper presents and discusses an integrative translational model, linking basic and experimental research with clinical research as well as population-based prospective-longitudinal studies. This model provides a conceptual framework to identify how individual vulnerabilities interact with environment over time, and promote critical behaviours that might act as proximal risk factors for ill-health and mental disorders. Within the models framework, such improved knowledge is also expected to better delineate targeted preventive and therapeutic interventions that prevent further escalation in early stages before the full disorder and further complications thereof develop. In contrast to conventional personalized medicine that typically targets individual (genetic) variation of patients who already have developed a disease to improve medical treatment, the proposed framework model, linked to a concerted funding programme of the Science of Behaviour Change, carries the promise of improved diagnosis, treatment and prevention of health-risk behaviour constellations as well as mental disorders.
  •  
16.
  • Dong, Li, et al. (författare)
  • Effects of the Circadian Rhythm Gene Period 1 (Per1) on Psychosocial Stress-Induced Alcohol Drinking
  • 2011
  • Ingår i: American Journal of Psychiatry. - 0002-953X .- 1535-7228. ; 168:10, s. 1090-1098
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Circadian and stress-response systems mediate environmental changes that affect alcohol drinking. Psychosocial stress is an environmental risk factor for alcohol abuse. Circadian rhythm gene period 1(Per1) is targeted by stress hormones and is transcriptionally activated in corticotropin releasing factor-expressing cells. The authors hypothesized that Per1 is involved in integrating stress response and circadian rhythmicity and explored its relevance to alcohol drinking. Method: In mice, the effects of stress on ethanol intake in mPer1-mutant and wild-type mice were assessed. In humans, single nucleotide polymorphisms (SNPs) in hPer1 were tested for association with alcohol drinking behavior in 273 adolescents and an adult case-control sample of 1,006 alcohol-dependent patients and 1,178 comparison subjects. In vitro experiments were conducted to measure genotype-specific expression and transcription factor binding to hPer1. Results: The mPer1-mutant mice showed enhanced alcohol consumption in response to social defeat stress relative to their wild-type littermates. An association with the frequency of heavy drinking in adolescents with the hPer1 promoter SNP rs3027172 and with psychosocial adversity was found. There was significant interaction between the rs3027172 genotype and psychosocial adversity on this drinking measure. In a confirmatory analysis, association of hPer1 rs3027172 with alcohol dependence was shown. Cortisol-induced transcriptional activation of hPer1 was reduced in human B-lymphoblastoid cells carrying the risk genotype of rs3027172. Binding affinity of the transcription factor Snail1 to the risk allele of the hPer1 SNP rs3027172 was also reduced. Conclusions: The findings indicate that the hPer1 gene regulates alcohol drinking behavior during stressful conditions and provide evidence for underlying neurobiological mechanisms.
  •  
17.
  • Mueller, Christian P., et al. (författare)
  • The Cortical Neuroimmune Regulator TANK Affects Emotional Processing and Enhances Alcohol Drinking : A Translational Study
  • 2019
  • Ingår i: ; 29:4, s. 1736-1751
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol abuse is a major public health problem worldwide. Understanding the molecular mechanisms that control regular drinking may help to reduce hazards of alcohol consumption. While immunological mechanisms have been related to alcohol drinking, most studies reported changes in immune function that are secondary to alcohol use. In this report, we analyse how the gene "TRAF family member-associated NF-kappa B activator" (TANK) affects alcohol drinking behavior. Based on our recent discovery in a large GWAS dataset that suggested an association of TANK, SNP rs197273, with alcohol drinking, we report that SNP rs197273 in TANK is associated both with gene expression (P = 1.16 x 10(-19)) and regional methylation (P = 5.90 x 10(-25)). A tank knock out mouse model suggests a role of TANK in alcohol drinking, anxiety-related behavior, as well as alcohol exposure induced activation of insular cortex NF-kappa B. Functional and structural neuroimaging studies among up to 1896 adolescents reveal that TANK is involved in the control of brain activity in areas of aversive interoceptive processing, including the insular cortex, but not in areas related to reinforcement, reward processing or impulsiveness. Our findings suggest that the cortical neuroimmune regulator TANK is associated with enhanced aversive emotional processing that better protects from the establishment of alcohol drinking behavior.
  •  
18.
  • Partonen, Timo, et al. (författare)
  • Three circadian clock genes Per2, Arnt1, and Npas2 contribute to winter depression
  • 2007
  • Ingår i: Annals of Medicine. - New York : Informa Healthcare. - 0785-3890 .- 1365-2060. ; 39:3, s. 229-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Multiple lines of evidence suggest that the circadian clock contributes to the pathogenesis of winter depression or seasonal affective disorder (SAD). We hypothesized that sequence variations in three genes, including Per2, Arntl, and Npas2, which form a functional unit at the core of the circadian clock, predispose to winter depression.Methods. In silico analysis of the biological effects of allelic differences suggested the target single-nucleotide polymorphisms (SNPs) to be analyzed in a sample of 189 patients and 189 matched controls. The most relevant SNP in each gene was identified for the interaction analysis and included in the multivariate assessment of the combined effects of all three SNPs on the disease risk.Results. SAD was associated with variations in each of the three genes in gene-wise logistic regression analysis. In combination analysis of variations of Per2, Arntl, and Npas2, we found additive effects and identified a genetic risk profile for the disorder. Carriers of the risk genotype combination had the odds ratio of 4.43 of developing SAD as compared with the remaining genotypes, and of 10.67 as compared with the most protective genotype combination.Conclusion. Variations in the three circadian clock genes Per2, Arntl, and Npas2 are associated with the disease, supporting the hypothesis that the circadian clock mechanisms contribute to winter depression.
  •  
19.
  • Ruggeri, Barbara, et al. (författare)
  • Methylation of OPRL1 mediates the effect of psychosocial stress on binge drinking in adolescents
  • 2018
  • Ingår i: ; 9:6, s. 50-658
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Nociceptin is a key regulator linking environmental stress and alcohol drinking. In a genome-wide methylation analysis, we recently identified an association of a methylated region in the OPRL1 gene with alcohol-use disorders.METHODS: Here, we investigate the biological basis of this observation by analysing psychosocial stressors, methylation of the OPRL1 gene, brain response during reward anticipation and alcohol drinking in 660 fourteen-year-old adolescents of the IMAGEN study. We validate our findings in marchigian sardinian (msP) alcohol-preferring rats that are genetically selected for increased alcohol drinking and stress sensitivity.RESULTS: We found that low methylation levels in intron 1 of OPRL1 are associated with higher psychosocial stress and higher frequency of binge drinking, an effect mediated by OPRL1 methylation. In individuals with low methylation of OPRL1, frequency of binge drinking is associated with stronger BOLD response in the ventral striatum during reward anticipation. In msP rats, we found that stress results in increased alcohol intake and decreased methylation of OPRL1 in the nucleus accumbens.CONCLUSIONS: Our findings describe an epigenetic mechanism that helps to explain how psychosocial stress influences risky alcohol consumption and reward processing, thus contributing to the elucidation of biological mechanisms underlying risk for substance abuse.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 22
  • Föregående 1[2]3Nästa
Typ av publikation
tidskriftsartikel (22)
Typ av innehåll
refereegranskat (22)
Författare/redaktör
Desrivieres, Sylvane (15)
Paus, Tomas (12)
Heinz, Andreas (11)
Jia, Tianye (10)
Boomsma, Dorret I. (10)
Heinz, A. (9)
visa fler...
Hottenga, Jouke-Jan (9)
Martinot, Jean-Luc (9)
Boomsma, DI (8)
Jahanshad, N (8)
Jahanshad, Neda (8)
Armstrong, Nicola J. (8)
Den Braber, Anouk (8)
Ehrlich, Stefan (8)
Teumer, Alexander (8)
Cichon, Sven (8)
Crespo-Facorro, Bene ... (8)
De Geus, Eco J. C. (8)
de Zubicaray, Greig ... (8)
McMahon, Katie L. (8)
Agartz, I (7)
Andreassen, OA (7)
Hottenga, JJ (7)
Hibar, DP (7)
Thompson, PM (7)
Djurovic, S (7)
Shin, J. (7)
Ophoff, RA (7)
Hibar, Derrek P. (7)
Ching, Christopher R ... (7)
Macare, Christine (7)
Mather, Karen A. (7)
Milaneschi, Yuri (7)
Roiz-Santianez, Robe ... (7)
Schork, Andrew J. (7)
Shin, Jean (7)
Tordesillas-Gutierre ... (7)
Van der Meer, Dennis (7)
Westlye, Lars T. (7)
Agartz, Ingrid (7)
Ames, David (7)
Andreassen, Ole A. (7)
Brodaty, Henry (7)
Brouwer, Rachel M. (7)
Djurovic, Srdjan (7)
Espeseth, Thomas (7)
Fisher, Simon E. (7)
Grabe, Hans J. (7)
Le Hellard, Stephani ... (7)
Ophoff, Roel A. (7)
visa färre...
Lärosäte
Uppsala universitet (14)
Karolinska Institutet (9)
Umeå universitet (8)
Stockholms universitet (3)
Linköpings universitet (2)
Lunds universitet (1)
visa fler...
Örebro universitet (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (5)
Samhällsvetenskap (2)
Teknik (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy