Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Szczygiel R. R.) "

Sökning: WFRF:(Szczygiel R. R.)

  • Resultat 21-25 av 25
  • Föregående 12[3]
Sortera/gruppera träfflistan
  • Abat, E., et al. (författare)
  • The ATLAS TRT end-cap detectors
  • 2008
  • Ingår i: Journal of Instrumentation. - : IOP Publishing. - 1748-0221. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATLAS TRT end-cap is a tracking drift chamber using 245,760 individual tubular drift tubes. It is a part of the TRT tracker which consist of the barrel and two end-caps. The TRT end-caps cover the forward and backward pseudo-rapidity region 1.0 < vertical bar eta vertical bar < 2.0, while the TRT barrel central eta region vertical bar eta vertical bar < 1.0. The TRT system provides a combination of continuous tracking with many measurements in individual drift tubes ( or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. Along with other two sub-systems, namely the Pixel detector and Semi Conductor Tracker (SCT), the TRT constitutes the ATLAS Inner Detector. This paper describes the recently completed and installed TRT end-cap detectors, their design, assembly, integration and the acceptance tests applied during the construction.
  • Shappee, B. J., et al. (författare)
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 826:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or Assassin) discovered ASASSN-141p just similar to 2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-141p went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-141p for more than 100 days. We find that ASASSN-141p had a broad light curve (Delta m(15) (B) = 0.80 +/- 0.05), a B-band maximum at 2457015.82 +/- 0.03, a rise time of 16.941(-0.10)(+0.11) days, and moderate host-galaxy extinction (E (B - V)host = 0.33 +/- 0.06). Using ASASSN-141p, we derive a distance modulus for NGC 4666 of mu = 30.8 +/- 0.2, corresponding to a distance of 14.7 +/- 1.5 Mpc. However, adding ASASSN-141p to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 RG(circle dot).
  • Åkesson, Torsten, et al. (författare)
  • Status of design and construction of the Transition Radiation Tracker (TRT) for the ATLAS experiment at the LHC
  • 2004
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier. - 0167-5087. ; 522:1-2, s. 131-145
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATLAS Inner Detector consists of three sub-systems, the Pixel Detector at the innermost radius, the Semi-Conductor Tracker at intermediate radii, and the Transition Radiation Tracker (TRT) at the outermost radius in front of the electromagnetic calorimeter. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift-tubes (or straws) and of electron identification based on radiator fibres or foils interleaved between the straws themselves. This paper describes the current status of design and construction of the various components of the TRT: the assembly of the barrel modules has recently been completed, that of the end-cap wheels is well underway, and the on-detector front-end electronics is in production. The detector modules and front-end electronics boards will be integrated together over the next year, the barrel and end-cap TRT parts will be assembled and tested with their SCT counterparts during 2005 and installation and commissioning in the ATLAS pit will take place at the end of 2005 and the beginning of 2006. (C) 2004 Elsevier B.V. All rights reserved.
  • Åkesson, Torsten, et al. (författare)
  • Implementation of the DTMROC-S ASIC for the ATLAS TRT Detector in a 0.25μm CMOS technology
  • 2003
  • Ingår i: IEEE Nuclear Science Symposium and Medical Imaging Conference. - : IEEE - Institute of Electrical and Electronics Engineers Inc.. - 1082-3654. - 0780376366 ; 1, s. 549-553
  • Konferensbidrag (refereegranskat)abstract
    • The DTMROC-S is a 16-channeI front-end chip developed for the signal processing of the ATLAS straw tube detector, TRT. Due to a highly radioactive environment, the chip is fabricated in a commercial 0.25μm CMOS technology hardened by layout techniques and, in addition, a special methodology was used to improve the circuit's robustness against Single Events Effects (SEE) caused by ionizing particles. Exhaustive internal test features were foreseen to simplify and ensure comprehensive design verification, high fault coverage and throughput. Compared to the previous version of the chip done in a 0.8μm radiation-hard CMOS and despite of all supplementary features, the Deep-Sub-Micron (DSM) technology results in a much smaller chip size that increases the production yield and lowers the power consumption.
Skapa referenser, mejla, bekava och länka
  • Resultat 21-25 av 25
  • Föregående 12[3]
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy