SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Varon Mateeva R) "

Sökning: WFRF:(Varon Mateeva R)

  • Resultat 31-38 av 38
  • Föregående 123[4]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  •  
32.
  •  
33.
  •  
34.
  • Maxwell, Christopher A., et al. (författare)
  • Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer
  • 2011
  • Ingår i: PLoS Biology. - : Public Library of Science. - 1545-7885 .- 1544-9173. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
  •  
35.
  •  
36.
  • Mulligan, Anna Marie, et al. (författare)
  • Common breast cancer susceptibility alleles are associated with tumor subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2.
  • 2011
  • Ingår i: Breast cancer research : BCR. - 1465-542X. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: INTRODUCTION: Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumor. METHODS: We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been affected with breast cancer and had information on either ER or PR status of the tumor, to assess the associations of twelve loci with breast cancer tumor characteristics. Associations were evaluated using a retrospective cohort approach. RESULTS: The results suggested stronger associations with ER-positive breast cancer than ER-negative for eleven loci in both BRCA1 and BRCA2 carriers. Among BRCA1 carriers, SNP rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele HR for ER-positive=1.35, 95%CI:1.17-1.56 vs HR=0.91, 95%CI:0.85-0.98 for ER-negative, P-heterogeneity=6.5e-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER-negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status. CONCLUSIONS: The associations of the twelve SNPs with risk for BRCA1 and BRCA2 carriers differ by ER-positive or ER-negative breast cancer status. The apparent differences in SNP associations between BRCA1 and BRCA2 carriers, and non-carriers, may be explicable by differences in the prevalence of tumor subtypes. As more risk modifying variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve clinical management for mutation carriers.
  •  
37.
  •  
38.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-38 av 38
  • Föregående 123[4]
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy