SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Waldenberger Melanie) "

Sökning: WFRF:(Waldenberger Melanie)

  • Resultat 21-30 av 32
  • Föregående 12[3]4Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Stitziel, Nathan O., et al. (författare)
  • Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease
  • 2016
  • Ingår i: New England Journal of Medicine. - Massachusetts Medical Society. - 0028-4793. ; 374:12, s. 1134-1144
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P = 4.2×10-10) and ANGPTL4 (p.E40K; minorallele frequency, 2.01%; odds ratio, 0.86; P = 4.0×10-8), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P = 0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P = 0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P = 2.0×10-4) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447∗; minor-allele frequency, 9.9%; odds ratio, 0.94; P = 2.5×10-7). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others).
  •  
22.
  • Teumer, Alexander, et al. (författare)
  • Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria
  • 2019
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
23.
  • Tin, Adrienne, et al. (författare)
  • Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:10, s. 1459-1474
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.
  •  
24.
  • van der Laan, Sander W., et al. (författare)
  • Cystatin C and Cardiovascular Disease A Mendelian Randomization Study
  • 2016
  • Ingår i: Journal of the American College of Cardiology. - 0735-1097 .- 1558-3597. ; 68:9, s. 934-945
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS We incorporated participant data from 16 prospective cohorts (n = 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n = 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p = 2.12 x 10(-14)). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p = 5.95 x 10(-211)), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence fora causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p = 0,994), which was statistically different from the observational estimate (p = 1.6 x 10(-5)). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD.
25.
  • van Setten, Jessica, et al. (författare)
  • PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity
  • 2018
  • Ingår i: Nature Communications. - NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genomewide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are overrepresented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of similar to 105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ionchannel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development.
26.
  • Wahl, Simone, et al. (författare)
  • Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity
  • 2017
  • Ingår i: Nature. - NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7635, s. 81-
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type (2) diabetes, cardiovascular disease and related metabolic and inflammatory disturbances(1,2). Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation(3-6), a key regulator of gene expression and molecular phenotype(7). Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 x 10(-7), range P = 9.2 x 10(-8) to 6.0 x 10(-46); n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 x 10(-6), range P = 5.5 x 10(-6) to 6.1 x 10(-35), n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 x 10(-54)). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
  •  
27.
  • Ward-Caviness, Cavin K., et al. (författare)
  • Improvement of myocardial infarction risk prediction via inflammation-associated metabolite biomarkers
  • 2017
  • Ingår i: Heart. - 1355-6037 .- 1468-201X. ; 103:16, s. 1278-1285
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective The comprehensive assaying of low-molecular-weight compounds, for example, metabolomics, provides a unique tool to uncover novel biomarkers and understand pathways underlying myocardial infarction (MI). We used a targeted metabolomics approach to identify biomarkers for MI and evaluate their involvement in the pathogenesis of MI.Methods and results Using three independent, prospective cohorts (KORA S4, KORA S2 and AGES-REFINE), totalling 2257 participants without a history of MI at baseline, we identified metabolites associated with incident MI (266 cases). We also investigated the association between the metabolites and high-sensitivity C reactive protein (hsCRP) to understand the relation between these metabolites and systemic inflammation. Out of 140 metabolites, 16 were nominally associated (p<0.05) with incident MI in KORA S4. Three metabolites, arginine and two lysophosphatidylcholines (LPC 17: 0 and LPC 18:2), were selected as biomarkers via a backward stepwise selection procedure in the KORA S4 and were significant (p<0.0003) in a meta-analysis comprising all three studies including KORA S2 and AGES-REFINE. Furthermore, these three metabolites increased the predictive value of the Framingham risk score, increasing the area under the receiver operating characteristic score in KORA S4 (from 0.70 to 0.78, p=0.001) and AGES-REFINE study (from 0.70 to 0.76, p=0.02), but was not observed in KORA S2. The metabolite biomarkers attenuated the association between hsCRP and MI, indicating a potential link to systemic inflammatory processes.Conclusions We identified three metabolite biomarkers, which in combination increase the predictive value of the Framingham risk score. The attenuation of the hsCRP-MI association by these three metabolites indicates a potential link to systemic inflammation.
  •  
28.
  • Webb, Thomas R., et al. (författare)
  • Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease
  • 2017
  • Ingår i: Journal of the American College of Cardiology. - Elsevier USA. - 0735-1097. ; 69:7, s. 823-836
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. Objectives This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci. Methods In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs. Results We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10−4 with a range of other diseases/traits. Conclusions We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.
29.
  • Weng, Lu Chen, et al. (författare)
  • Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation : The AFGen Consortium
  • 2017
  • Ingår i: Scientific Reports. - Nature Publishing Group. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than among those > 65 years (interaction p-value = 4.0 × 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk.
30.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 32
  • Föregående 12[3]4Nästa
Åtkomst
fritt online (14)
Typ av publikation
tidskriftsartikel (32)
Typ av innehåll
refereegranskat (32)
Författare/redaktör
Waldenberger, Melani ... (32)
Gieger, Christian (22)
Peters, Annette (22)
Gudnason, Vilmundur, (17)
Uitterlinden, Andre ... (17)
Harris, Tamara B. (16)
visa fler...
Metspalu, Andres (16)
Teumer, Alexander, (15)
Strauch, Konstantin (15)
Samani, Nilesh J. (14)
Esko, Tonu (14)
van der Harst, Pim (14)
Hayward, Caroline (13)
Meitinger, Thomas (13)
Boerwinkle, Eric (13)
Franco, Oscar H, (13)
Smith, Albert V., (12)
Hofman, Albert, (12)
Launer, Lenore J., (12)
Chasman, Daniel I., (12)
Loos, Ruth J. F. (12)
Nolte, Ilja M (12)
Jukema, J. Wouter, (11)
Van Duijn, Cornelia ... (11)
Snieder, Harold (11)
Gasparini, Paolo (11)
Verweij, Niek (11)
Meisinger, Christa (11)
Trompet, Stella, (10)
Psaty, Bruce M., (10)
Munroe, Patricia B. (10)
Rudan, Igor (10)
Ferrucci, Luigi, (9)
Ford, Ian, (9)
Rotter, Jerome I., (9)
Deloukas, Panos (9)
Ridker, Paul M., (9)
Scott, Robert A (9)
Salomaa, Veikko (9)
Feitosa, Mary F. (9)
Campbell, Harry (9)
Hicks, Andrew A. (9)
Lehtimaki, Terho (9)
Pramstaller, Peter P ... (9)
Müller-Nurasyid, Mar ... (9)
Ulivi, Sheila (9)
Asselbergs, Folkert ... (9)
Mihailov, Evelin, (9)
Mueller-Nurasyid, Ma ... (9)
Lu, Yingchang, (9)
visa färre...
Lärosäte
Uppsala universitet (25)
Lunds universitet (13)
Karolinska Institutet (12)
Umeå universitet (8)
Göteborgs universitet (5)
Högskolan Dalarna (5)
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (30)
Naturvetenskap (4)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy