SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng Lilly S) "

Sökning: WFRF:(Zheng Lilly S)

  • Resultat 11-20 av 41
  • Föregående 1[2]345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  • Lindstrom, Sara, et al. (författare)
  • Genetic variation in the upstream region of ERG and prostate cancer
  • 2009
  • Ingår i: Cancer Causes and Control. - : SPRINGER. - 0957-5243 .- 1573-7225. ; 20:7, s. 1173-1180
  • Tidskriftsartikel (refereegranskat)abstract
    • A considerable fraction of prostate cancers harbor a gene fusion between the androgen-regulated TMPRSS2 and ERG, one of the most frequently over-expressed proto-oncogenes in prostate cancer. Here, we investigated if inherited genetic variation upstream of ERG alters prostate cancer risk and survival. We genotyped 21 haplotype tagging SNPs (htSNPs) covering 123 kb of 5'UTR DNA including exon 3 of ERG in 2,760 incident prostate cancer cases and 1,647 controls from a population-based Swedish case-control study (CAPS). Individual SNPs and haplotypes were tested for association with prostate cancer risk and survival. One haplotype-'CTCGTATG' located 100 kb upstream of ERG-was associated with lethal prostate cancer (HR, 1.36; 95% CI, 1.2-1.9, p = 0.006). Carriers of the variant 'T' allele of rs2836626 were diagnosed with higher TNM-stage (p = 0.009) and had an increased risk of prostate cancer-specific death (HR = 1.3; 95% CI, 1.1-1.7, p = 0.009). However, this association did not remain statistically significant after adjusting for multiple testing. We found overall no association between ERG variation and prostate cancer risk. Genetic variation upstream of ERG may alter prostate cancer stage and ultimately prostate cancer-specific death but it is unlikely that it plays a role in prostate cancer development.
  •  
13.
  • Lindstrom, Sara, et al. (författare)
  • Systematic replication study of reported genetic associations in prostate cancer : Strong support for genetic variation in the androgen pathway
  • 2006
  • Ingår i: The Prostate. - Karolinska Inst, Dept Med Epidemiol & Biostat, SE-17177 Stockholm, Sweden. Umea Univ, Dept Radiat Sci Oncol, Umea, Sweden. Wake Forest Univ, Sch Med, Ctr Human Genome, Winston Salem, NC USA. Karolinska Inst, Ctr Genome & Bioinformat, Stockholm, Sweden. Univ Leicester, Dept Genet, Leicester, Leics, England. Johns Hopkins Med Inst, Dept Urol, Baltimore, MD USA. Karolinska Inst, CLINTEC, Ctr Oncol, Stockholm, Sweden. : WILEY-LISS. - 0270-4137 .- 1097-0045. ; 66:16, s. 1729-1743
  • Forskningsöversikt (refereegranskat)abstract
    • BACKGROUND. Association studies have become a common and popular method to identify genetic variants predisposing to complex diseases. Despite considerable efforts and initial promising findings, the field of prostate cancer genetics is characterized by inconclusive reports and no prostate cancer gene has yet been established. METHODS. We performed a literature review and identified 79 different polymorphisms reported to influence prostate cancer risk. Of these, 46 were selected and tested for association in a large Swedish population-based case-control prostate cancer population. RESULTS. We observed significant (P < 0.05) confirmation for six polymorphisms located in five different genes. Three of them coded for key enzymes in the androgen biosynthesis and response pathway; the CAG repeat in the androgen receptor (AR) gene (P = 0.03), one SNP in the CYP17 gene (P = 0.04), two SNPs in the SRD5A2 gene (P = 0.02 and 0.02, respectively), a deletion of the GSTT1. gene (P = 0.006), and one SNP in the MSR1 gene, IVS5-59C > A, (P = 0.009). CONCLUSIONS. Notwithstanding the difficulties to replicate findings in genetic association studies, our results strongly support the importance of androgen pathway genes in prostate cancer etiology.
  •  
14.
  •  
15.
  • Lu, Lingyi, et al. (författare)
  • Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG
  • 2012
  • Ingår i: The Prostate. - 0270-4137 .- 1097-0045. ; 72:4, s. 410-426
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer (PC) remains largely incomplete. In a previous microsatellite-based linkage scan of 1,233 PC families, we identified suggestive evidence for linkage (i.e., LOD?=?1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members. METHODS. In an attempt to replicate these findings and increase linkage resolution, we used the Illumina 6000 SNP linkage panel to perform a genome-wide linkage scan of an independent set of 762 multiplex PC families, collected by 11 International Consortium for Prostate Cancer Genetics (ICPCG) groups. RESULTS. Of the regions identified previously, modest evidence of replication was observed only on the short arm of chromosome 8, where HLOD scores of 1.63 and 3.60 were observed in the complete set of families and families with young average age at diagnosis, respectively. The most significant linkage signals found in the complete set of families were observed across a broad, 37cM interval on 4q13-25, with LOD scores ranging from 2.02 to 2.62, increasing to 4.50 in families with older average age at diagnosis. In families with multiple cases presenting with more aggressive disease, LOD cores over 3.0 were observed at 8q24 in the vicinity of previously identified common PC risk variants, as well as MYC, an important gene in PC biology. CONCLUSIONS. These results will be useful in prioritizing future susceptibility gene discovery efforts in thiscommon cancer. Prostate 72: 410-426, 2012. (C) 2011 Wiley Periodicals, Inc.
  •  
16.
  • Wiklund, Fredrik, et al. (författare)
  • Association of Reported Prostate Cancer Risk Alleles With PSA Levels Among Men Without a Diagnosis of Prostate Cancer
  • 2009
  • Ingår i: The Prostate. - : John Wiley and Sons Inc.. - 0270-4137 .- 1097-0045. ; 69:4, s. 419-427
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND. Prostate specific antigen (PSA) is widely used for prostate cancer screening but its levels are influenced by many non cancer-related factors. The goal of the study is to estimate the effect of genetic variants on PSA levels. METHODS. We evaluated the association of SNPs that were reported to be associated with prostate cancer risk in recent genome-wide association studies with plasma PSA levels in a Swedish study population, including 1,722 control subjects without a diagnosis of prostate cancer. RESULTS. Of the 16 SNPs analyzed in control subjects, significant associations with PSA levels (P <= 0.05) were found for six SNPs. These six SNP's had a cumulative effect on PSA levels; the mean PSA levels in men were almost twofold increased across increasing quintile of number of PSA associated alleles, P-trend = 3.4 x 10(-14). In this Swedish study population risk allele frequencies were similar among T1c case patients (cancer detected by elevated PSA levels alone) as compared to T2 and above prostate cancer case patients. CONCLUSIONS. Results from this study may have two important clinical implications. The cumulative effect of six SNPs on PSA levels suggests genetic-specific PSA cutoff values may be used to improve the discriminatory performance of this test for prostate cancer; and the dual associations of these SNPs with PSA levels and prostate cancer risk raise a concern that some of reported prostate cancer risk-associated SNPs may be confounded by the prevalent use of PSA screening. Prostate 69: 419-427, 2009. (C) 2008 Wiley-Liss, Inc.
  •  
17.
  • Zheng, S. Lilly, et al. (författare)
  • A comprehensive association study for genes in inflammation pathway provides support for their roles in prostate cancer risk in the CAPS study
  • 2006
  • Ingår i: The Prostate. - Wake Forest Univ, Bowman Gray Sch Med, Ctr Human Genom, Winston Salem, NC USA. Karolinska Inst, Dept Med Epidemiol & Biotat, Stockholm, Sweden. Orebro Univ Hosp, Dept Urol & Clin Med, Orebro, Sweden. Translat Genom Res Inst, Phoenix, AZ USA. Johns Hopkins Med Inst, Dept Urol, Baltimore, MD 21205 USA. : WILEY-LISS. - 0270-4137 .- 1097-0045. ; 66:14, s. 1556-1564
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND. Recently identified associations of prostate cancer risk with several genes involved in innate immunity support a role of inflammation in the etiology of prostate cancer. Considering inflammation is regulated by a complex system of gene products, we hypothesize sequence variants in many other genes of this pathway are associated with prostate cancer. METHODS. We evaluated 9,275 SNPs; in 1,086 genes of the inflammation pathway using a MegAlleleTM genotyping system among 200 familial cases and 200 unaffected controls selected from a large Swedish case-control population (CAPS). RESULTS. We found that significantly more than the expected numbers of SNPs were significant at a nominal P-value of 0.01, 0.05, and 0.1, providing overall support for our hypothesis. The excess was largest when using a more liberal nominal P-value (0.1); we observed 992 significant SNPs compared with the 854 significant SNPs expected by chance, and this difference was significant based on a permutation test (P = 0.0025). We also began the effort of differentiating true associated SNPs by selecting a small subset of significant SNPs (N = 26) and genotyped these in an independent sample of similar to 1,900 CAPS1 subjects. We were able to confirm 3 of these 26 SNPs. It is expected that many more true associated SNPs will be confirmed among the 992 significant SNPs identified in our pathway screen. CONCLUSIONS. Our study provides the first objective support for an association between prostate cancer and multiple modest-effect genes in inflammatory pathways.
  •  
18.
  • Lindmark, F, et al. (författare)
  • H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer
  • 2004
  • Ingår i: Journal of the National Cancer Institute. - Umea Univ, Dept Radiat Sci Oncol, S-90187 Umea, Sweden. Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden. Umea Univ Hosp, Dept Urol & Androl, S-90185 Umea, Sweden. Wake Forest Univ, Sch Med, Ctr Human Genomics, Winston Salem, NC 27109 USA. Johns Hopkins Med Inst, Dept Urol, Baltimore, MD 21205 USA. : OXFORD UNIV PRESS INC. - 0027-8874 .- 1460-2105. ; 96:16, s. 1248-1254
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Accumulating epidemiologic and molecular evidence suggest that inflammation is an important component in the etiology of prostate cancer. Macrophage-inhibitory cytokine-1 (MIC-1), a member of the transforming growth factor beta superfamily, is thought to play an important role in inflammation by regulating macrophage activity. We examined whether sequence variants in the MIC-1 gene are associated with the risk of prostate cancer. Methods: The study population, a population-based case-control study in Sweden, consisted of 1383 prostate cancer case patients and 780 control subjects. From 94 of the control subjects, we constructed gene-specific haplotypes of MIC-1 and identified four haplotype-tagging single-nucleotide polymorphisms (SNPs): Exon1+25 (V9L), Exon1+142 (S48T), IVS1+1809, and Exon2+2423 (H6D). All study subjects were genotyped for the four SNPs, and conditional logistic regression analysis was used to estimate odds ratios (ORs) with 95% confidence intervals (CIs). Results: A statistically significant difference (P = .006) in genotype frequency was observed for the nonsynonymous change H6D) (histidine to aspartic acid at position 6) between prostate cancer patients and control subjects. Carriers of the GC genotype, which results in the H6D change, experienced a lower risk of sporadic prostate cancer (OR = 0.80, 95% CI = 0.66 to 0.97) and of familial prostate cancer (OR = 0.61, 95% CI = 0.42 to 0.89) than the CC genotype carriers. In the study population, the proportion of prostate cancer cases attributable to the CC genotype was 7.2% for sporadic cancer and 19.2% for familial cancer. None of the other SNPs or haplotypes was associated with prostate cancer. Conclusion: This study shows an association between a nonsynonymous change (H6D) in the MIC-1 gene and prostate cancer. This finding supports the hypothesis that genetic variation in the inflammatory process contributes to prostate cancer susceptibility.
  •  
19.
  • Sun, J L, et al. (författare)
  • Sequence variants in toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk
  • 2005
  • Ingår i: Journal of the National Cancer Institute. - Wake Forest Univ, Sch Med, Ctr Human Genom, Winston Salem, NC 27157 USA. Umea Univ, Dept Radiat Sci & Oncol, Umea, Sweden. Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden. Orebro Univ Hosp, Dept Urol & Clin Med, Orebro, Sweden. Univ Uppsala Hosp, Reg Oncol Ctr, Uppsala, Sweden. Johns Hopkins Sch Med, Dept Urol, Baltimore, MD USA. : OXFORD UNIV PRESS INC. - 0027-8874 .- 1460-2105. ; 97:7, s. 525-532
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Chronic inflammation plays an important role in several human cancers and may be involved in the etiology of prostate cancer. Toll-like receptors (TLRs) are important in the innate immune response to pathogens and in cross-talk between innate immunity and adaptive immunity. Our previous finding of an association of TLR4 gene sequence variants and prostate cancer risk provides evidence for a role of TLRs in prostate cancer. In this study, we investigated whether sequence variants in the TLR6-TLR1-TLR10 gene cluster, residing within a 54-kb region on 4p14, were associated with prostate cancer risk. Methods: We selected 32 single-nucleotide polymorphisms (SNPs) covering these three genes and genotyped these SNPs in 96 control subjects from the Cancer Prostate in Sweden (CAPS) population-based prostate cancer case-control study. Five distinct haplotype blocks were inferred at this region, and we identified 17 haplotype-tagging SNPs (htSNPs) that could uniquely describe < 95% of the haplotypes. These 17 htSNPs were then genotyped in the entire CAPS study population (1383 case subjects and 780 control subjects). Odds ratios of prostate cancer for the carriers of a variant allele versus those with the wild-type allele were estimated using unconditional logistic regression. Results: The allele frequencies of 11 of the 17 SNPs were statistically significantly different between case and control subjects (P = .04-.001), with odds ratios for variant allele carriers (homozygous or heterozygous) compared with wild-type allele carriers ranging from 1.20 (95% confidence interval [CI] = 1.00 to 1.43) to 1.38 (95% CI = 1.12 to 1.70). Phylogenetic tree analyses of common haplotypes identified a clade of two evolutionarily related haplotypes that are statistically significantly associated with prostate cancer risk. These two haplotypes contain all the risk alleles of these 11 associated SNPs. Conclusion: The observed multiple associated SNPs at the TLR6-TLR1-TLR10 gene cluster were dependent and suggest the presence of a founder prostate cancer risk variant on this haplotype background. The TLR6-TLR1-TLR10 gene cluster may play a role in prostate cancer risk, although further functional studies are needed to pinpoint the disease-associated variants in this gene cluster.
  •  
20.
  • Zheng, S. Lilly, et al. (författare)
  • Two independent prostate cancer risk-associated Loci at 11q13
  • 2009
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - 1055-9965 .- 1538-7755. ; 18:6, s. 1815-1820
  • Tidskriftsartikel (refereegranskat)abstract
    • Single nucleotide polymorphisms (SNP) at 11q13 were recently implicated in prostate cancer risk by two genome-wide association studies and were consistently replicated in multiple study populations. To explore prostate cancer association in the regions flanking these SNPs, we genotyped 31 tagging SNPs in a approximately 110 kb region at 11q13 in a Swedish case-control study (Cancer of the Prostate in Sweden), including 2,899 cases and 1,722 controls. We found evidence of prostate cancer association for the previously implicated SNPs including rs10896449, which we termed locus 1. In addition, multiple SNPs on the centromeric side of the region, including rs12418451, were also significantly associated with prostate cancer risk (termed locus 2). The two groups of SNPs were separated by a recombination hotspot. We then evaluated these two representative SNPs in an additional approximately 4,000 cases and approximately 3,000 controls from three study populations and confirmed both loci at 11q13. In the combined allelic test of all four populations, P = 4.0 x 10(-11) for rs10896449 at locus 1 and P = 1.2 x 10(-6) for rs12418451 at locus 2, and both remained significant after adjusting for the other locus and study population. The prostate cancer association at these two 11q13 loci was unlikely confounded by prostate-specific antigen (PSA) detection bias because neither SNP was associated with PSA levels in controls. Unlike locus 1, in which no known gene is located, several putative mRNAs are in close proximity to locus 2. Additional confirmation studies at locus 2 and functional studies for both loci are needed to advance our knowledge on the etiology of prostate cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 41
  • Föregående 1[2]345Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy