SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amos Christopher I) "

Sökning: WFRF:(Amos Christopher I)

  • Resultat 51-60 av 82
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Liu, Yanhong, et al. (författare)
  • Insight in glioma susceptibility through an analysis of 6p22.3, 12p13.33-12.1, 17q22-23.2 and 18q23 SNP genotypes in familial and non-familial glioma
  • 2012
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 131:9, s. 1507-1517
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk of glioma has consistently been shown to be increased twofold in relatives of patients with primary brain tumors (PBT). A recent genome-wide linkage study of glioma families provided evidence for a disease locus on 17q12-21.32, with the possibility of four additional risk loci at 6p22.3, 12p13.33-12.1, 17q22-23.2, and 18q23. To identify the underlying genetic variants responsible for the linkage signals, we compared the genotype frequencies of 5,122 SNPs mapping to these five regions in 88 glioma cases with and 1,100 cases without a family history of PBT (discovery study). An additional series of 84 familial and 903 non-familial cases were used to replicate associations. In the discovery study, 12 SNPs showed significant associations with family history of PBT (P < 0.001). In the replication study, two of the 12 SNPs were confirmed: 12p13.33-12.1 PRMT8 rs17780102 (P = 0.031) and 17q12-21.32 SPOP rs650461 (P = 0.025). In the combined analysis of discovery and replication studies, the strongest associations were attained at four SNPs: 12p13.33-12.1 PRMT8 rs17780102 (P = 0.0001), SOX5 rs7305773 (P = 0.0001) and STKY1 rs2418087 (P = 0.0003), and 17q12-21.32 SPOP rs6504618 (P = 0.0006). Further, a significant gene-dosage effect was found for increased risk of family history of PBT with these four SNPs in the combined data set (P (trend) <1.0 × 10(-8)). The results support the linkage finding that some loci in the 12p13.33-12.1 and 17q12-q21.32 may contribute to gliomagenesis and suggest potential target genes underscoring linkage signals.
  •  
52.
  • Luyapan, Jennifer, et al. (författare)
  • A new efficient method to detect genetic interactions for lung cancer GWAS
  • 2020
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies (GWAS) have proven successful in predicting genetic risk of disease using single-locus models; however, identifying single nucleotide polymorphism (SNP) interactions at the genome-wide scale is limited due to computational and statistical challenges. We addressed the computational burden encountered when detecting SNP interactions for survival analysis, such as age of disease-onset. To confront this problem, we developed a novel algorithm, called the Efficient Survival Multifactor Dimensionality Reduction (ES-MDR) method, which used Martingale Residuals as the outcome parameter to estimate survival outcomes, and implemented the Quantitative Multifactor Dimensionality Reduction method to identify significant interactions associated with age of disease-onset. Methods: To demonstrate efficacy, we evaluated this method on two simulation data sets to estimate the type I error rate and power. Simulations showed that ES-MDR identified interactions using less computational workload and allowed for adjustment of covariates. We applied ES-MDR on the OncoArray-TRICL Consortium data with 14,935 cases and 12,787 controls for lung cancer (SNPs = 108,254) to search over all two-way interactions to identify genetic interactions associated with lung cancer age-of-onset. We tested the best model in an independent data set from the OncoArray-TRICL data. Results: Our experiment on the OncoArray-TRICL data identified many one-way and two-way models with a single-base deletion in the noncoding region of BRCA1 (HR 1.24, P = 3.15 × 10–15), as the top marker to predict age of lung cancer onset. Conclusions: From the results of our extensive simulations and analysis of a large GWAS study, we demonstrated that our method is an efficient algorithm that identified genetic interactions to include in our models to predict survival outcomes.
  •  
53.
  • Luyapan, Jennifer, et al. (författare)
  • Candidate pathway analysis of surfactant proteins identifies CTSH and SFTA2 that influences lung cancer risk
  • 2023
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 32:18, s. 2842-2855
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary surfactant is a lipoprotein synthesized and secreted by alveolar type II cells in lung. We evaluated the associations between 200,139 single nucleotide polymorphisms (SNPs) of 40 surfactant-related genes and lung cancer risk using genotyped data from two independent lung cancer genome-wide association studies. Discovery data included 18,082 cases and 13,780 controls of European ancestry. Replication data included 1,914 cases and 3,065 controls of European descent. Using multivariate logistic regression, we found novel SNPs in surfactant-related genes CTSH [rs34577742 C > T, odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.89-0.93, P = 7.64 × 10-9] and SFTA2 (rs3095153 G > A, OR = 1.16, 95% CI = 1.10-1.21, P = 1.27 × 10-9) associated with overall lung cancer in the discovery data and validated in an independent replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.80-0.96, P = 5.76 × 10-3) and SFTA2 (rs3095153 G > A, OR = 1.14, 95% CI = 1.01-1.28, P = 3.25 × 10-2). Among ever smokers, we found SNPs in CTSH (rs34577742 C > T, OR = 0.89, 95% CI = 0.85-0.92, P = 1.94 × 10-7) and SFTA2 (rs3095152 G > A, OR = 1.20, 95% CI = 1.14-1.27, P = 4.25 × 10-11) associated with overall lung cancer in the discovery data and validated in the replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.79-0.97, P = 1.64 × 10-2) and SFTA2 (rs3095152 G > A, OR = 1.15, 95% CI = 1.01-1.30, P = 3.81 × 10-2). Subsequent transcriptome-wide association study using expression weights from a lung expression quantitative trait loci study revealed genes most strongly associated with lung cancer are CTSH (PTWAS = 2.44 × 10-4) and SFTA2 (PTWAS = 2.32 × 10-6).
  •  
54.
  • MacGregor, Stuart, et al. (författare)
  • Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1114-1118
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a genome-wide association study of melanoma in a discovery cohort of 2,168 Australian individuals with melanoma and 4,387 control individuals. In this discovery phase, we confirm several previously characterized melanoma-associated loci at MC1R, ASIP and MTAP-CDKN2A. We selected variants at nine loci for replication in three independent case-control studies (Europe: 2,804 subjects with melanoma, 7,618 control subjects; United States 1: 1,804 subjects with melanoma, 1,026 control subjects; United States 2: 585 subjects with melanoma, 6,500 control subjects). The combined meta-analysis of all case-control studies identified a new susceptibility locus at 1q21.3 (rs7412746, P = 9.0 x 10(-11), OR in combined replication cohorts of 0.89 (95% CI 0.85-0.95)). We also show evidence suggesting that melanoma associates with 1q42.12 (rs3219090, P = 9.3 x 10(-8)). The associated variants at the 1q21.3 locus span a region with ten genes, and plausible candidate genes for melanoma susceptibility include ARNT and SETDB1. Variants at the 1q21.3 locus do not seem to be associated with human pigmentation or measures of nevus density.
  •  
55.
  • Melin, Beatrice S., et al. (författare)
  • Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors
  • 2017
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:5, s. 789-794
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have transformed our understanding of glioma susceptibility, but individual studies have had limited power to identify risk loci. We performed a meta-analysis of existing GWAS and two new GWAS, which totaled 12,496 cases and 18,190 controls. We identified five new loci for glioblastoma (GBM) at 1p31.3 (rs12752552; P = 2.04 x 10(-9), odds ratio (OR) = 1.22), 11q14.1 (rs11233250; P = 9.95 x 10(-10), OR = 1.24), 16p13.3 (rs2562152; P = 1.93 x 10-8, OR = 1.21), 16q12.1 (rs10852606; P = 1.29 x 10(-11), OR = 1.18) and 22q13.1 (rs2235573; P = 1.76 x 10(-10), OR = 1.15), as well as eight loci for non-GBM tumors at 1q32.1 (rs4252707; P = 3.34 x 10(-9), OR = 1.19), 1q44 (rs12076373; P = 2.63 x 10(-10), OR = 1.23), 2q33.3 (rs7572263; P = 2.18 x 10(-10), OR = 1.20), 3p14.1 (rs11706832; P = 7.66 x 10(-9), OR = 1.15), 10q24.33 (rs11598018; P = 3.39 x 10-8, OR = 1.14), 11q21 (rs7107785; P = 3.87 x 10(-10), OR = 1.16), 14q12 (rs10131032; P = 5.07 x 10(-11), OR = 1.33) and 16p13.3 (rs3751667; P = 2.61 x 10(-9), OR = 1.18). These data substantiate that genetic susceptibility to GBM and non-GBM tumors are highly distinct, which likely reflects different etiology.
  •  
56.
  • Ostrom, Quinn T., et al. (författare)
  • Age‐specific genome‐wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'‐like features associated with younger age
  • 2018
  • Ingår i: International Journal of Cancer. - : WILEY. - 0020-7136 .- 1097-0215. ; 143:10, s. 2359-2366
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma (GBM) is the most common malignant brain tumor in the United States. Incidence of GBM increases with age, and younger age‐at‐diagnosis is significantly associated with improved prognosis. While the relationship between candidate GBM risk SNPs and age‐at‐diagnosis has been explored, genome‐wide association studies (GWAS) have not previously been stratified by age. Potential age‐specific genetic effects were assessed in autosomal SNPs for GBM patients using data from four previous GWAS. Using age distribution tertiles (18–53, 54–64, 65+) datasets were analyzed using age‐stratified logistic regression to generate p values, odds ratios (OR), and 95% confidence intervals (95%CI), and then combined using meta‐analysis. There were 4,512 total GBM cases, and 10,582 controls used for analysis. Significant associations were detected at two previously identified SNPs in 7p11.2 (rs723527 [p54–63 = 1.50x10−9, OR54–63 = 1.28, 95%CI54–63 = 1.18–1.39; p64+ = 2.14x10−11, OR64+ = 1.32, 95%CI64+ = 1.21–1.43] and rs11979158 [p54–63 = 6.13x10−8, OR54–63 = 1.35, 95%CI54–63 = 1.21–1.50; p64+ = 2.18x10−10, OR64+ = 1.42, 95%CI64+ = 1.27–1.58]) but only in persons >54. There was also a significant association at the previously identified lower grade glioma (LGG) risk locus at 8q24.21 (rs55705857) in persons ages 18–53 (p18–53 = 9.30 × 10−11, OR18–53 = 1.76, 95%CI18–53 = 1.49–2.10). Within The Cancer Genome Atlas (TCGA) there was higher prevalence of ‘LGG’‐like tumor characteristics in GBM samples in those 18–53, with IDH1/2 mutation frequency of 15%, as compared to 2.1% [54–63] and 0.8% [64+] (p = 0.0005). Age‐specific differences in cancer susceptibility can provide important clues to etiology. The association of a SNP known to confer risk for IDH1/2 mutant glioma and higher prevalence of IDH1/2 mutation within younger individuals 18–53 suggests that more younger individuals may present initially with ‘secondary glioblastoma.’
  •  
57.
  • Ostrom, Quinn T., et al. (författare)
  • Evaluating glioma risk associated with extent of European admixture in African-Americans and Latinos
  • 2018
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 78:13
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Glioma incidence is highest in non-Hispanic Whites, where it occurs ~2x as frequently compared with other race/ethnicity groups. Glioma GWAS to date have included European ancestry populations only, and it is unknown whether variants identified by these analyses are associated with glioma in non- European ancestry populations. African Americans and Hispanics are admixed populations with varying proportions of European ancestry. While global ancestry may be similar within admixed groups, the proportion of European ancestry at each allele can vary across the genome. As glioma is more common in European ancestry populations, the presence of increased local European ancestry in these admixed populations could be used to identify glioma risk loci. Here we assessed whether excess European ancestry at established risk loci (Melin et al, Nature Genetics, 2017) was associated with glioma risk in non-European ancestry populations. Global ancestry was estimated using fastStructure, and local ancestry was estimated using RFMix. Both methods used 1,000 genomes project reference populations (African: YRI; European: CEU; East Asian: CHB/JPT; and Native American: CLM/PEL/MXL). We evaluated differences in local European ancestry between cases and controls using logistic regression conditioned on global European ancestry within 500kb of 25 previously identified risk variants among individuals with ≥50% African ancestry, and ≥30% Native American ancestry for all gliomas, and for grade IV glioblastoma (GBM) and grade II-III non-GBM. There were 347 individuals (184 cases and 163 controls) with ≥50% global African ancestry, and 277 individuals (153 cases and 124 controls) with ≥30% global American ancestry. There was no significant difference in proportion of global European ancestry between cases and controls with ≥50% global African ancestry (cases: 18.2%, controls: 17.7%, p=0.6834), and no significant difference in proportion of global European ancestry between cases and controls with ≥30% global American ancestry (cases: 51.1%, controls: 49.0%, p=0.2123). Among individuals with >50% African ancestry, we observed a nominally significant association between all glioma and increased local European ancestry at 7p11.2 (EGFR, pmin=0.0070) and between GBM and increased local European ancestry at 22q13.1 (CSNK1E, pmin=0.0098), both near SNPs previously associated with glioblastoma in majority European-ancestry populations. The dataset used for this analysis represents the largest collection of genotyped non-European glioma cases. These results suggest that glioma risk in African Americans may be associated with an increased local European ancestry variants at glioma risk loci previously identified in majority European ancestry populations (7p11.2 and 22q13.1).
  •  
58.
  • Ostrom, Quinn T., et al. (författare)
  • Glioma risk associated with extent of estimated European genetic ancestry in African Americans and Hispanics
  • 2020
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 146:3, s. 739-748
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioma incidence is highest in non-Hispanic Whites, and to date, glioma genome-wide association studies (GWAS) to date have only included European ancestry (EA) populations. African Americans and Hispanics in the US have varying proportions of EA, African (AA) and Native American ancestries (NAA). It is unknown if identified GWAS loci or increased EA is associated with increased glioma risk. We assessed whether EA was associated with glioma in African Americans and Hispanics. Data were obtained for 832 cases and 675 controls from the Glioma International Case-Control Study and GliomaSE Case-Control Study previously estimated to have <80% EA, or self-identify as non-White. We estimated global and local ancestry using fastStructure and RFMix, respectively, using 1,000 genomes project reference populations. Within groups with >= 40% AA (AFR(>= 0.4)), and >= 15% NAA (AMR(>= 0.15)), genome-wide association between local EA and glioma was evaluated using logistic regression conditioned on global EA for all gliomas. We identified two regions (7q21.11, p = 6.36 x 10(-4); 11p11.12, p = 7.0 x 10-4) associated with increased EA, and one associated with decreased EA (20p12.13, p = 0.0026) in AFR(>= 0.4). In addition, we identified a peak at rs1620291 (p = 4.36 x 10(-6)) in 7q21.3. Among AMR(>= 0.15), we found an association between increased EA in one region (12q24.21, p = 8.38 x 10(-4)), and decreased EA in two regions (8q24.21, p = 0. 0010; 20q13.33, p = 6.36 x 10(-4)). No other significant associations were identified. This analysis identified an association between glioma and two regions previously identified in EA populations (8q24.21, 20q13.33) and four novel regions (7q21.11, 11p11.12, 12q24.21 and 20p12.13). The identifications of novel association with EA suggest regions to target for future genetic association studies. What's new? Glioma is rare in non-White populations, and most glioma genome-wide association studies have included only primarily European ancestry populations. Here, the authors assess whether variation in European ancestry is associated with glioma risk in populations with a combination of European, African and Native American ancestry. Based on African American and Hispanic cases from two large glioma case-control studies, this analysis shows that increased European ancestry in admixed populations may be associated with increased glioma risk. The associations between glioma and two chromosomal regions previously identified in European ancestry populations, and four novel regions, may guide future studies.
  •  
59.
  • Ostrom, Quinn T., et al. (författare)
  • Partitioned glioma heritability shows subtype-specific enrichment in immune cells
  • 2021
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 23:8, s. 1304-1314
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological studies of adult glioma have identified genetic syndromes and 25 heritable risk loci that modify individual risk for glioma, as well increased risk in association with exposure to ionizing radiation and decreased risk in association with allergies. In this analysis, we assess whether there is a shared genome-wide genetic architecture between glioma and atopic/autoimmune diseases.Methods: Using summary statistics from a glioma genome-wide association studies (GWAS) meta-analysis, we identified significant enrichment for risk variants associated with gene expression changes in immune cell populations. We also estimated genetic correlations between glioma and autoimmune, atopic, and hematologic traits using linkage disequilibrium score regression (LDSC), which leverages genome-wide single-nucleotide polymorphism (SNP) associations and patterns of linkage disequilibrium.Results: Nominally significant negative correlations were observed for glioblastoma (GB) and primary biliary cirrhosis (rg = -0.26, P =. 0228), and for non-GB gliomas and celiac disease (rg = -0.32, P =. 0109). Our analyses implicate dendritic cells (GB pHM = 0.0306 and non-GB pHM = 0.0186) in mediating both GB and non-GB genetic predisposition, with GB-specific associations identified in natural killer (NK) cells (pHM = 0.0201) and stem cells (pHM = 0.0265).Conclusions: This analysis identifies putative new associations between glioma and autoimmune conditions with genomic architecture that is inversely correlated with that of glioma and that T cells, NK cells, and myeloid cells are involved in mediating glioma predisposition. This provides further evidence that increased activation of the acquired immune system may modify individual susceptibility to glioma.
  •  
60.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 82
Typ av publikation
tidskriftsartikel (82)
Typ av innehåll
refereegranskat (80)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Amos, Christopher I. (75)
Hung, Rayjean J. (42)
Brennan, Paul (39)
Johansson, Mattias (37)
Chen, Chu (36)
Christiani, David C. (35)
visa fler...
Le Marchand, Loïc (34)
Johansson, Mikael (34)
Aldrich, Melinda C (33)
Field, John K. (33)
Liu, Geoffrey (33)
Tardon, Adonina (31)
Kiemeney, Lambertus ... (29)
Landi, Maria Teresa (29)
Lazarus, Philip (29)
Schabath, Matthew B. (29)
Bojesen, Stig E. (28)
Risch, Angela (28)
Grankvist, Kjell (27)
Lam, Stephen (27)
Houlston, Richard S. (24)
Shete, Sanjay (24)
Melin, Beatrice S. (23)
Olson, Sara H. (22)
Shen, Hongbing (22)
Andrew, Angeline S. (21)
Caporaso, Neil E. (20)
Johansen, Christoffe ... (19)
Rennert, Gad (19)
Bondy, Melissa L. (19)
Jenkins, Robert B. (18)
Han, Younghun (18)
Wu, Xifeng (18)
Melander, Olle (17)
Albanes, Demetrius (17)
Wichmann, H. Erich (17)
McKay, James D. (17)
Duell, Eric J. (16)
Il'yasova, Dora (16)
Claus, Elizabeth B. (16)
Bernstein, Jonine L. (16)
Xiao, Xiangjun (16)
Bickeböller, Heike (15)
Davies, Michael P A (15)
Cox, Angela (14)
Lissowska, Jolanta (14)
Barnholtz-Sloan, Jil ... (14)
Sadetzki, Siegal (14)
Arnold, Susanne (14)
Caporaso, Neil (14)
visa färre...
Lärosäte
Umeå universitet (68)
Lunds universitet (31)
Karolinska Institutet (14)
Uppsala universitet (9)
Göteborgs universitet (2)
Linköpings universitet (2)
Språk
Engelska (82)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (81)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy