SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ashton K) "

Sökning: WFRF:(Ashton K)

  • Resultat 51-60 av 99
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Brum, Wagner S., et al. (författare)
  • Biological variation estimates of Alzheimer's disease plasma biomarkers in healthy individuals
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:2, s. 1284-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aβ42, Aβ40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI) and between-subject (CVG) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG. Aβ42/Aβ40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aβ42/Aβ40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.
  •  
52.
  • Bucci, M., et al. (författare)
  • Profiling of plasma biomarkers in the context of memory assessment in a tertiary memory clinic
  • 2023
  • Ingår i: Translational Psychiatry. - 2158-3188. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma biomarkers have shown promising performance in research cohorts in discriminating between different stages of Alzheimer's disease (AD). Studies in clinical populations are necessary to provide insights on the clinical utility of plasma biomarkers before their implementation in real-world settings. Here we investigated plasma biomarkers (glial fibrillary acidic protein (GFAP), tau phosphorylated at 181 and 231 (pTau181, pTau231), amyloid & beta; (A & beta;) 42/40 ratio, neurofilament light) in 126 patients (age = 65 & PLUSMN; 8) who were admitted to the Clinic for Cognitive Disorders, at Karolinska University Hospital. After extensive clinical assessment (including CSF analysis), patients were classified as: mild cognitive impairment (MCI) (n = 75), AD (n = 25), non-AD dementia (n = 16), no dementia (n = 9). To refine the diagnosis, patients were examined with [F-18]flutemetamol PET (A & beta;-PET). A & beta;-PET images were visually rated for positivity/negativity and quantified in Centiloid. Accordingly, 68 A & beta;+ and 54 A & beta;- patients were identified. Plasma biomarkers were measured using single molecule arrays (SIMOA). Receiver-operated curve (ROC) analyses were performed to detect A & beta;-PET+ using the different biomarkers. In the whole cohort, the A & beta;-PET centiloid values correlated positively with plasma GFAP, pTau231, pTau181, and negatively with A & beta;42/40 ratio. While in the whole MCI group, only GFAP was associated with A & beta; PET centiloid. In ROC analyses, among the standalone biomarkers, GFAP showed the highest area under the curve discriminating A & beta;+ and A & beta;- compared to other plasma biomarkers. The combination of plasma biomarkers via regression was the most predictive of A & beta;-PET, especially in the MCI group (prior to PET, n = 75) (sensitivity = 100%, specificity = 82%, negative predictive value = 100%). In our cohort of memory clinic patients (mainly MCI), the combination of plasma biomarkers was sensitive in ruling out A & beta;-PET negative individuals, thus suggesting a potential role as rule-out tool in clinical practice.
  •  
53.
  • Chatterjee, Pratishtha, et al. (författare)
  • Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease.
  • 2022
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:6, s. 1141-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD).Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis.Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume.These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
  •  
54.
  • Chatterjee, Pratishtha, et al. (författare)
  • Plasma neurofilament light chain and amyloid-β are associated with the kynurenine pathway metabolites in preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood markers indicative of neurodegeneration (neurofilament light chain; NFL), Alzheimer's disease amyloid pathology (amyloid-β; Aβ), and neuroinflammation (kynurenine pathway; KP metabolites) have been investigated independently in neurodegenerative diseases. However, the association of these markers of neurodegeneration and AD pathology with neuroinflammation has not been investigated previously. Therefore, the current study examined whether NFL and Aβ correlate with KP metabolites in elderly individuals to provide insight on the association between blood indicators of neurodegeneration and neuroinflammation.Correlations between KP metabolites, measured using liquid chromatography and gas chromatography coupled with mass spectrometry, and plasma NFL and Aβ concentrations, measured using single molecule array (Simoa) assays, were investigated in elderly individuals aged 65-90years, with normal global cognition (Mini-Mental State Examination Score≥26) from the Kerr Anglican Retirement Village Initiative in Ageing Health cohort.A positive correlation between NFL and the kynurenine to tryptophan ratio (K/T) reflecting indoleamine 2,3-dioxygenase activity was observed (r=.451, p<.0001). Positive correlations were also observed between NFL and kynurenine (r=.364, p<.0005), kynurenic acid (r=.384, p<.0001), 3-hydroxykynurenine (r=.246, p=.014), anthranilic acid (r=.311, p=.002), and quinolinic acid (r=.296, p=.003). Further, significant associations were observed between plasma Aβ40 and the K/T (r=.375, p<.0005), kynurenine (r=.374, p<.0005), kynurenic acid (r=.352, p<.0005), anthranilic acid (r=.381, p<.0005), and quinolinic acid (r=.352, p<.0005). Significant associations were also observed between plasma Aβ42 and the K/T ratio (r=.215, p=.034), kynurenic acid (r=.214, p=.035), anthranilic acid (r=.278, p=.006), and quinolinic acid (r=.224, p=.027) in the cohort. On stratifying participants based on their neocortical Aβ load (NAL) status, NFL correlated with KP metabolites irrespective of NAL status; however, associations between plasma Aβ and KP metabolites were only pronounced in individuals with high NAL while associations in individuals with low NAL were nearly absent.The current study shows that KP metabolite changes are associated with biomarker evidence of neurodegeneration. Additionally, the association between KP metabolites and plasma Aβ seems to be NAL status dependent. Finally, the current study suggests that an association between neurodegeneration and neuroinflammation manifests in the periphery, suggesting that preventing cytoskeleton cytotoxicity by KP metabolites may have therapeutic potential.
  •  
55.
  • Chiotis, K., et al. (författare)
  • Tracking reactive astrogliosis in autosomal dominant and sporadic Alzheimer's disease with multi-modal PET and plasma GFAP
  • 2023
  • Ingår i: Molecular Neurodegeneration. - 1750-1326. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundPlasma assays for the detection of Alzheimer's disease neuropathological changes are receiving ever increasing interest. The concentration of plasma glial fibrillary acidic protein (GFAP) has been suggested as a potential marker of astrocytes or recently, amyloid-& beta; burden, although this hypothesis remains unproven. We compared plasma GFAP levels with the astrocyte tracer 11C-Deuterium-L-Deprenyl (11C-DED) in a multi-modal PET design in participants with sporadic and Autosomal Dominant Alzheimer's disease.MethodsTwenty-four individuals from families with known Autosomal Dominant Alzheimer's Disease mutations (mutation carriers = 10; non-carriers = 14) and fifteen patients with sporadic Alzheimer's disease were included. The individuals underwent PET imaging with 11C-DED, 11C-PIB and 18F-FDG, as markers of reactive astrogliosis, amyloid-& beta; deposition, and glucose metabolism, respectively, and plasma sampling for measuring GFAP concentrations. Twenty-one participants from the Autosomal Dominant Alzheimer's Disease group underwent follow-up plasma sampling and ten of these participants underwent follow-up PET imaging.ResultsIn mutation carriers, plasma GFAP levels and 11C-PIB binding increased, while 11C-DED binding and 18F-FDG uptake significantly decreased across the estimated years to symptom onset. Cross-sectionally, plasma GFAP demonstrated a negative correlation with 11C-DED binding in both mutation carriers and patients with sporadic disease. Plasma GFAP indicated cross-sectionally a significant positive correlation with 11C-PIB binding and a significant negative correlation with 18F-FDG in the whole sample. The longitudinal levels of 11C-DED binding showed a significant negative correlation with longitudinal plasma GFAP concentrations over the follow-up interval.ConclusionsPlasma GFAP concentration and astrocyte 11C-DED brain binding levels followed divergent trajectories and may reflect different underlying processes. The strong negative association between plasma GFAP and 11C-DED binding in Autosomal Dominant and sporadic Alzheimer's disease brains may indicate that if both are markers of reactive astrogliosis, they may detect different states or subtypes of astrogliosis. Increased 11C-DED brain binding seems to be an earlier phenomenon in Alzheimer's disease progression than increased plasma GFAP concentration.
  •  
56.
  • Chong, Joyce R, et al. (författare)
  • Association of plasma GFAP with elevated brain amyloid is dependent on severity of white matter lesions in an Asian cognitively impaired cohort.
  • 2024
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - 2352-8729. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • While elevated blood glial fibrillary acidic protein (GFAP) has been associated with brain amyloid pathology, whether this association occurs in populations with high cerebral small vessel disease (CSVD) concomitance remains unclear.Using a Singapore-based cohort of cognitively impaired subjects, we assessed associations between plasma GFAP and neuroimaging measures of brain amyloid and CSVD, including white matter hyperintensities (WMH). We also examined the diagnostic performance of plasma GFAP in detecting brain amyloid beta positivity (Aβ+).When stratified by WMH status, elevated brain amyloid was associated with higher plasma GFAP only in the WMH- group (β=0.383; P<0.001). The diagnostic performance of plasma GFAP in identifying Aβ+ was significantly higher in the WMH- group (area under the curve [AUC]=0.896) than in the WMH+ group (AUC=0.712, P=0.008).The biomarker utility of plasma GFAP in detecting brain amyloid pathology is dependent on the severity of concomitant WMH.Glial fibrillary acidic protein (GFAP)'s association with brain amyloid is unclear in populations with high cerebral small vessel disease (CSVD).Plasma GFAP was measured in a cohort with CSVD and brain amyloid.Plasma GFAP was better in detecting amyloid in patients with low CSVD versus high CSVD.Biomarker utility of GFAP in detecting brain amyloid depends on the severity of CSVD.
  •  
57.
  • Chong, J. R., et al. (författare)
  • Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer's disease: a focused review on recent advances
  • 2021
  • Ingår i: Journal of Neurology Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 92:11, s. 1231-1241
  • Forskningsöversikt (refereegranskat)abstract
    • Discovery and development of clinically useful biomarkers for Alzheimer's disease (AD) and related dementias have been the focus of recent research efforts. While cerebrospinal fluid and positron emission tomography or MRI-based neuroimaging markers have made the in vivo detection of AD pathology and its consequences possible, the high cost and invasiveness have limited their widespread use in the clinical setting. On the other hand, advances in potentially more accessible blood-based biomarkers had been impeded by lack of sensitivity in detecting changes in markers of the hallmarks of AD, including amyloid-beta (A beta) peptides and phosphorylated tau (P-tau). More recently, however, emerging technologies with superior sensitivity and specificity for measuring A beta and P-tau have reported high concordances with AD severity. In this focused review, we describe several emerging technologies, including immunoprecipitation-mass spectrometry (IP-MS), single molecule array and Meso Scale Discovery immunoassay platforms, and appraise the current literature arising from their use to identify plaques, tangles and other AD-associated pathology. While there is potential clinical utility in adopting these technologies, we also highlight the further studies needed to establish A beta and P-tau as blood-based biomarkers for AD, including validation with existing large sample sets, new independent cohorts from diverse backgrounds as well as population-based longitudinal studies. In conclusion, the availability of sensitive and reliable measurements of A beta peptides and P-tau species in blood holds promise for the diagnosis, prognosis and outcome assessments in clinical trials for AD.
  •  
58.
  • Chong, J. R., et al. (författare)
  • Brain atrophy and white matter hyperintensities are independently associated with plasma neurofilament light chain in an Asian cohort of cognitively impaired patients with concomitant cerebral small vessel disease
  • 2023
  • Ingår i: Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. - : Wiley. - 2352-8729. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionPlasma neurofilament light chain (NfL) is a potential biomarker for neurodegeneration in Alzheimer's disease (AD), ischemic stroke, and non-dementia cohorts with cerebral small vessel disease (CSVD). However, studies of AD in populations with high prevalence of concomitant CSVD to evaluate associations of brain atrophy, CSVD, and amyloid beta (A beta) burden on plasma NfL are lacking. MethodsAssociations were tested between plasma NfL and brain A beta, medial temporal lobe atrophy (MTA) as well as neuroimaging features of CSVD, including white matter hyperintensities (WMH), lacunes, and cerebral microbleeds. ResultsWe found that participants with either MTA (defined as MTA score >= 2; neurodegeneration [N]+WMH-) or WMH (cut-off for log-transformed WMH volume at 50th percentile; N-WMH+) manifested increased plasma NfL levels. Participants with both pathologies (N+WMH+) showed the highest NfL compared to N+WMH-, N-WMH+, and N-WMH- individuals. DiscussionPlasma NfL has potential utility in stratifying individual and combined contributions of AD pathology and CSVD to cognitive impairment.
  •  
59.
  • Chong, Joyce R, et al. (författare)
  • Plasma P-tau181 to Aβ42 ratio is associated with brain amyloid burden and hippocampal atrophy in an Asian cohort of Alzheimer's disease patients with concomitant cerebrovascular disease.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:10, s. 1649-1662
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increasing evidence that phosphorylated tau (P-tau181) is a specific biomarker for Alzheimer's disease (AD) pathology, but its potential utility in non-White patient cohorts and patients with concomitant cerebrovascular disease (CeVD) is unknown.Single molecule array (Simoa) measurements of plasma P-tau181, total tau, amyloid beta (Aβ)40 and Aβ42, as well as derived ratios were correlated with neuroimaging modalities indicating brain amyloid (Aβ+), hippocampal atrophy, and CeVD in a Singapore-based cohort of non-cognitively impaired (NCI; n=43), cognitively impaired no dementia (CIND; n=91), AD (n=44), and vascular dementia (VaD; n=22) subjects.P-tau181/Aβ42 ratio showed the highest area under the curve (AUC) for Aβ+ (AUC=0.889) and for discriminating between AD Aβ+ and VaD Aβ- subjects (AUC=0.903). In addition, P-tau181/Aβ42 ratio was associated with hippocampal atrophy. None of the biomarkers was associated with CeVD.Plasma P-tau181/Aβ42 ratio may be a noninvasive means of identifying AD with elevated brain amyloid in populations with concomitant CeVD.
  •  
60.
  • Cooper, Declan L.M., et al. (författare)
  • Consistent patterns of common species across tropical tree communities
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 728-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 99
Typ av publikation
tidskriftsartikel (92)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (92)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Ashton, Nicholas J. (39)
Zetterberg, Henrik, ... (34)
Blennow, Kaj, 1958 (31)
Karikari, Thomas (17)
Dunning, AM (12)
Hall, P (11)
visa fler...
Czene, K (11)
Tomlinson, I (11)
Beckmann, MW (11)
Cox, A (11)
Lambrechts, D (11)
Easton, DF (11)
Spurdle, AB (11)
Amant, F (11)
Gorman, M (11)
Scott, RJ (11)
Trovik, J (11)
Hein, A (11)
Dennis, J (10)
Wang, Q. (10)
Lindblom, A (10)
Martin, L (10)
Michailidou, K (10)
Brauch, H (10)
Shah, M (10)
Fasching, PA (10)
Ekici, AB (10)
Burwinkel, B (10)
Chang-Claude, J (10)
Mints, M (10)
Hillemanns, P (10)
Meindl, A (10)
Goode, EL (10)
Tham, E. (10)
Tyrer, JP (10)
Thompson, DJ (10)
Brenner, H (9)
Ahmed, S. (9)
McEvoy, M. (9)
Giles, GG (9)
Bolla, MK (9)
Hopper, JL (9)
Peto, J (9)
Dork, T (9)
Healey, CS (9)
Hodgson, S. (9)
Lessa Benedet, André ... (9)
Attia, J. (9)
Fridley, BL (9)
Runnebaum, I (9)
visa färre...
Lärosäte
Göteborgs universitet (51)
Karolinska Institutet (39)
Uppsala universitet (13)
Lunds universitet (13)
Kungliga Tekniska Högskolan (4)
Stockholms universitet (4)
visa fler...
Chalmers tekniska högskola (4)
Umeå universitet (2)
Linköpings universitet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (99)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (53)
Naturvetenskap (19)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy