SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ashton Nicholas J) "

Sökning: WFRF:(Ashton Nicholas J)

  • Resultat 91-100 av 252
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
91.
  •  
92.
  • Pascoal, Tharick A, et al. (författare)
  • Microglial activation and tau propagate jointly across Braak stages.
  • 2021
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 27, s. 1592-1599
  • Tidskriftsartikel (refereegranskat)abstract
    • Compelling experimental evidence suggests that microglial activation is involved in the spread of tau tangles over the neocortex in Alzheimer's disease (AD). We tested the hypothesis that the spatial propagation of microglial activation and tau accumulation colocalize in a Braak-like pattern in the living human brain. We studied 130 individuals across the aging and AD clinical spectrum with positron emission tomography brain imaging for microglial activation ([11C]PBR28), amyloid-β (Aβ) ([18F]AZD4694) and tau ([18F]MK-6240) pathologies. We further assessed microglial triggering receptor expressed on myeloid cells 2 (TREM2) cerebrospinal fluid (CSF) concentrations and brain gene expression patterns. We found that [11C]PBR28 correlated with CSF soluble TREM2 and showed regional distribution resembling TREM2 gene expression. Network analysis revealed that microglial activation and tau correlated hierarchically with each other following Braak-like stages. Regression analysis revealed that the longitudinal tau propagation pathways depended on the baseline microglia network rather than the tau network circuits. The co-occurrence of Aβ, tau and microglia abnormalities was the strongest predictor of cognitive impairment in our study population. Our findings support a model where an interaction between Aβ and activated microglia sets the pace for tau spread across Braak stages.
  •  
93.
  •  
94.
  • Patel, H., et al. (författare)
  • Proteomic blood profiling in mild, severe and critical COVID-19 patients
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent SARS-CoV-2 pandemic manifests itself as a mild respiratory tract infection in most individuals, leading to COVID-19 disease. However, in some infected individuals, this can progress to severe pneumonia and acute respiratory distress syndrome (ARDS), leading to multi-organ failure and death. This study explores the proteomic differences between mild, severe, and critical COVID-19 positive patients to further understand the disease progression, identify proteins associated with disease severity, and identify potential therapeutic targets. Blood protein profiling was performed on 59 COVID-19 mild (n=26), severe (n=9) or critical (n=24) cases and 28 controls using the OLINK inflammation, autoimmune, cardiovascular and neurology panels. Differential expression analysis was performed within and between disease groups to generate nine different analyses. From the 368 proteins measured per individual, more than 75% were observed to be significantly perturbed in COVID-19 cases. Six proteins (IL6, CKAP4, Gal-9, IL-1ra, LILRB4 and PD-L1) were identified to be associated with disease severity. The results have been made readily available through an interactive web-based application for instant data exploration and visualization, and can be accessed at https://phidatalab-shiny.rosalind.kcl.ac.uk/COVID19/. Our results demonstrate that dynamic changes in blood proteins associated with disease severity can potentially be used as early biomarkers to monitor disease severity in COVID-19 and serve as potential therapeutic targets.
  •  
95.
  • Pilotto, A., et al. (författare)
  • Plasma NfL, clinical subtypes and motor progression in Parkinson's disease
  • 2021
  • Ingår i: Parkinsonism & Related Disorders. - : Elsevier BV. - 1353-8020. ; 87, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: neurofilament light chain (NfL) levels have been proposed as reliable biomarkers of neurodegeneration in Parkinson's disease (PD) but the relationship between plasma NfL, clinical subtypes of PD and motor progression is still debated. Methods: plasma NfL concentration was measured in 45 healthy controls and consecutive 92 PD patients who underwent an extensive motor and non-motor assessment at baseline and after 2 years of follow-up. PD malignant phenotype was defined as the combination of at least two out of cognitive impairment, orthostatic hypotension and REM sleep behavior disorder. PD patients were divided according to the age-adjusted cut-offs of plasma NfL levels into high and normal NfL (H-NfL and N-NfL, respectively). A multivariable linear regression model was used to assess the value of plasma NfL as predictor of 2-years progression in PD. Results: NfL was higher in PD patients than in controls (p = 0.037). H-NfL (n = 16) group exhibited more severe motor and non-motor symptoms, higher prevalence of malignant phenotype and worse motor progression (MDSUPDRS-III 11.3 vs 0.7 points, p = 0.003) compared to N-NfL group (n = 76). In linear regression analyses plasma NfL emerged as the best predictor of 2-year motor progression compared to age, sex, disease duration, baseline motor/non-motor variables. Conclusion: increased plasma NfL concentration is associated with malignant PD phenotype and faster motor progression. These findings support the role of NfL assessment as a useful measure for stratifying patients with different baseline slopes of decline in future clinical trials of putative disease-modifying treatments.
  •  
96.
  • Rial, Alexis Moscoso, et al. (författare)
  • CSF biomarkers and plasma p-tau181 as predictors of longitudinal tau accumulation: Implications for clinical trial design
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:12, s. 2614-2626
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Clinical trials targeting tau in Alzheimer's disease (AD) need to recruit individuals at risk of tau accumulation. Here, we studied cerebrospinal fluid (CSF) biomarkers and plasma phosphorylated tau (p-tau)181 as predictors of tau accumulation on positron emission tomography (PET) to evaluate implications for trial designs. Methods: We included older individuals who had serial tau-PET scans, baseline amyloid beta (Aβ)-PET, and baseline CSF biomarkers (n=163) or plasma p-tau181 (n=74). We studied fluid biomarker associations with tau accumulation and estimated trial sample sizes and screening failure reductions by implementing these markers into participant selection for trials. Results: P-tau181 in CSF and plasma predicted tau accumulation (r>0.36, P<.001), even in AD-continuum individuals with normal baseline tau-PET (A+T–; r>0.37, P<.05). Recruitment based on CSF biomarkers yielded comparable sample sizes to Aβ-PET. Prescreening with plasma p-tau181 reduced up to ≈50% of screening failures. Discussion: Clinical trials testing tau-targeting therapies may benefit from using fluid biomarkers to recruit individuals at risk of tau aggregation. © 2022 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association
  •  
97.
  • Rial, Alexis Moscoso, et al. (författare)
  • Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease.
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 78:4, s. 396-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its ability to monitor disease progression in AD remains unclear.To study the potential of longitudinal plasma p-tau181 measures for assessing neurodegeneration progression and cognitive decline in AD in comparison to plasma neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury.This longitudinal cohort study included data from the Alzheimer's Disease Neuroimaging Initiative from February 1, 2007, to June 6, 2016. Follow-up blood sampling was performed for up to 8 years. Plasma p-tau181 measurements were performed in 2020. This was a multicentric observational study of 1113 participants, including cognitively unimpaired participants as well as patients with cognitive impairment (mild cognitive impairment and AD dementia). Participants were eligible for inclusion if they had available plasma p-tau181 and NfL measurements and at least 1 fluorine-18-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) or structural magnetic resonance imaging scan performed at the same study visit. Exclusion criteria included any significant neurologic disorder other than suspected AD; presence of infection, infarction, or multiple lacunes as detected by magnetic resonance imaging; and any significant systemic condition that could lead to difficulty complying with the protocol.Plasma p-tau181 and NfL measured with single-molecule array technology.Longitudinal imaging markers of neurodegeneration (FDG PET and structural magnetic resonance imaging) and cognitive test scores (Preclinical Alzheimer Cognitive Composite and Alzheimer Disease Assessment Scale-Cognitive Subscale with 13 tasks). Data were analyzed from June 20 to August 15, 2020.Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600 men [53.9%]; 992 non-Hispanic White participants [89.1%]), a total of 378 individuals (34.0%) were cognitively unimpaired (CU) and 735 participants (66.0%) were cognitively impaired (CImp). Of the CImp group, 537 (73.1%) had mild cognitive impairment, and 198 (26.9%) had AD dementia. Longitudinal changes of plasma p-tau181 were associated with cognitive decline (CU: r=-0.24, P<.001; CImp: r=0.34, P<.001) and a prospective decrease in glucose metabolism (CU: r=-0.05, P=.48; CImp: r=-0.27, P<.001) and gray matter volume (CU: r=-0.19, P<.001; CImp: r=-0.31, P<.001) in highly AD-characteristic brain regions. These associations were restricted to amyloid-β-positive individuals. Both plasma p-tau181 and NfL were independently associated with cognition and neurodegeneration in brain regions typically affected in AD. However, NfL was also associated with neurodegeneration in brain regions exceeding this AD-typical spatial pattern in amyloid-β-negative participants. Mediation analyses found that approximately 25% to 45% of plasma p-tau181 outcomes on cognition measures were mediated by the neuroimaging-derived markers of neurodegeneration, suggesting links between plasma p-tau181 and cognition independent of these measures.Study findings suggest that plasma p-tau181 was an accessible and scalable marker for predicting and monitoring neurodegeneration and cognitive decline and was, unlike plasma NfL, AD specific. The study findings suggest implications for the use of plasma biomarkers as measures to monitor AD progression in clinical practice and treatment trials.
  •  
98.
  • Rial, Alexis Moscoso, et al. (författare)
  • Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:1, s. 325-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer's disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer's disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer's disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer's disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (n=1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-β PET scan at baseline. A subset of participants (n=864) also had measures of amyloid-β1-42 and p-tau181 levels in CSF, and another subset (n=298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-β pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer's disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-β markers reached abnormal levels, with greater rates of change correlating with increased amyloid-β pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-β pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-β were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer's disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-β, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-β pathology and with prospective Alzheimer's disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer's disease.
  •  
99.
  • Scheeren Brum, Wagner, 1997, et al. (författare)
  • A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings.
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n=548) and in the TRIAD study (n=179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value.
  •  
100.
  • Schindler, Suzanne E, et al. (författare)
  • Effect of Race on Prediction of Brain Amyloidosis by Plasma Aβ42/Aβ40, Phosphorylated Tau, and Neurofilament Light.
  • 2022
  • Ingår i: Neurology. - 1526-632X. ; 99:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate whether plasma biomarkers of amyloid (Aβ42/Aβ40), tau (p-tau181 and p-tau231) and neuroaxonal injury (neurofilament light chain [NfL]) detect brain amyloidosis consistently across racial groups.Individuals enrolled in studies of memory and aging who self-identified as African American (AA) were matched 1:1 to self-identified non-Hispanic White (NHW) individuals by age, APOE ε4 carrier status and cognitive status. Each participant underwent blood and cerebrospinal fluid (CSF) collection, and amyloid PET was performed in 103 participants (68%). Plasma Aβ42/Aβ40 was measured by a high-performance immunoprecipitation-mass spectrometry assay. Plasma p-tau181, p-tau231, and NfL were measured by Simoa immunoassays. CSF Aβ42/Aβ40 and amyloid PET status were used as primary and secondary reference standards of brain amyloidosis, respectively.There were 76 matched pairs of AA and NHW participants (n=152 total). For both AA and NHW groups, the median age was 68.4 years, 42% were APOE ε4 carriers and 91% were cognitively normal. AA were less likely than NHW to have brain amyloidosis by CSF Aβ42/Aβ40 (22% versus 43% positive, p = 0.003). The Receiver Operating Characteristic Area Under the Curve (ROC AUC) of CSF Aβ42/Aβ40 status with the plasma biomarkers was as follows: Aβ42/Aβ40, 0.86 (95% confidence intervals [CI] 0.79-0.92); p-tau181, 0.76 (0.68-0.84); p-tau231, 0.69 (0.60-0.78); and NfL, 0.64 (0.55-0.73). In models predicting CSF Aβ42/Aβ40 status with plasma Aβ42/Aβ40 that included covariates (age, sex, APOE ε4 carrier status, race, and cognitive status), race did not affect the probability of CSF Aβ42/Aβ40 positivity. In similar models based on plasma p-tau181, p-tau231 or Nfl, AA had a lower probability of CSF Aβ42/Aβ40 positivity (Odds Ratio [OR] 0.31 [95% CI 0.13-0.73], OR 0.30 [0.13-0.71]) and OR 0.27 [0.12-0.64], respectively. Models of amyloid PET status yielded similar findings.Models predicting brain amyloidosis using a high performance plasma Aβ42/Aβ40 assay may provide an accurate and consistent measure of brain amyloidosis across AA and NHW groups, but models based on plasma p-tau181, p-tau231, and NfL may perform inconsistently and could result in disproportionate misdiagnosis of AA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 91-100 av 252
Typ av publikation
tidskriftsartikel (243)
forskningsöversikt (9)
Typ av innehåll
refereegranskat (246)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Ashton, Nicholas J. (244)
Zetterberg, Henrik, ... (213)
Blennow, Kaj, 1958 (205)
Karikari, Thomas (96)
Lessa Benedet, André ... (63)
Lantero Rodriguez, J ... (49)
visa fler...
Rosa-Neto, Pedro (31)
Montoliu-Gaya, Laia (28)
Simrén, Joel, 1996 (27)
Hansson, Oskar (25)
Brum, Wagner S. (25)
Pascoal, Tharick A (24)
Schöll, Michael, 198 ... (23)
Snellman, Anniina (22)
Rosa-Neto, P. (22)
Therriault, Joseph (21)
Janelidze, Shorena (19)
Hye, Abdul (19)
Zetterberg, Henrik (18)
Suárez-Calvet, Marc (17)
Therriault, J. (17)
Tissot, C. (17)
Gauthier, S (16)
Stevenson, Jenna (16)
Blennow, Kaj (15)
Mattsson-Carlgren, N ... (15)
Gauthier, Serge (15)
Brinkmalm, Gunnar (14)
Stomrud, Erik (14)
Palmqvist, Sebastian (14)
Tissot, Cecile (14)
Lussier, F. Z. (14)
Stevenson, J (13)
Chamoun, M. (13)
Servaes, Stijn (13)
Rahmouni, N. (13)
Schöll, Michael (12)
Leuzy, Antoine (12)
Vanmechelen, Eugeen (12)
Rahmouni, Nesrine (12)
Servaes, S. (12)
Zimmer, E. R. (11)
Di Molfetta, Gugliel ... (11)
Salvadó, Gemma (10)
Gobom, Johan (10)
Kvartsberg, Hlin, 19 ... (10)
Kac, Przemyslaw R. (10)
Lleó, Alberto (9)
Frisoni, Giovanni B. (9)
Lovestone, Simon (9)
visa färre...
Lärosäte
Göteborgs universitet (246)
Lunds universitet (46)
Karolinska Institutet (43)
Uppsala universitet (8)
Örebro universitet (6)
Stockholms universitet (3)
visa fler...
Luleå tekniska universitet (1)
Linköpings universitet (1)
Jönköping University (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (252)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (244)
Naturvetenskap (10)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy