SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Banerjee Amitava) "

Sökning: WFRF:(Banerjee Amitava)

  • Resultat 11-20 av 56
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  • Araujo, Rafael Barros Neves de, et al. (författare)
  • Divulging the Hidden Capacity and Sodiation Kinetics of NaxC6Cl4O2 : A High Voltage Organic Cathode for Sodium Rechargeable Batteries
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:26, s. 14027-14036
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current emerging sustainable organic battery field, quinones are seen as one of the prime candidates for application in rechargeable battery electrodes. Recently, C6Cl4O2, a modified quinone, has been proposed as a high voltage organic cathode. However, the sodium insertion mechanism behind the cell reaction remained unclear due to the nescience of the right crystal structure. Here, the framework of the density functional theory (DFT) together with an evolutionary algorithm was employed to elucidate the crystal structures of the compounds NaxC6Cl4O2 (x = 0.5, 1.0, 1.5 and 2). Along with the usefulness of PBE functional to reflect the experimental potential, also the importance of the hybrid functional to divulge the hidden theoretical capacity is evaluated. We showed that the experimentally observed lower specific capacity is a result of the great stabilization of the intermediate phase Na1.5C6Cl4O2. The calculated activation barriers for the ionic hops are 0.68, 0.40, and 0.31 eV, respectively, for NaC6Cl4O2, Na1.5C6Cl4O2, and Na2C6Cl4O2. These results indicate that the kinetic process must not be a limiting factor upon Na insertion. Finally, the correct prediction of the specific capacity has confirmed that the theoretical strategy used, employing evolutionary simulations together with the hybrid functional framework, can rightly model the thermodynamic process in organic electrode compounds.
  •  
13.
  • Banerjee, Amitava, et al. (författare)
  • Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH2)(3)](+)-based hybrid perovskite solar cells
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 5:35, s. 18561-18568
  • Tidskriftsartikel (refereegranskat)abstract
    • Guanidinium lead iodide (GAPbI(3)) has been synthesized experimentally, but stability remains an issue, which can be modulated by the insertion of bromine (Br) into the system. We have performed a systematic theoretical investigation to see how bromination can tune the stability of GAPbI(3). The optical properties were also determined, and we have found formation enthalpy-based stability in the perovskite systems, which are active in the visible and IR region even after bromine insertion and additionally more active in the IR range with the transition from GAPbI(3) to GAPbBr(3). The spin orbit coupling effect is considered throughout the band structure calculations. The ensemble of the primary and secondary gaps in the half and fully brominated hybrid perovskites leads to the phenomenon of a multipeak response in the optical spectra, which can be subsequently attributed as multivalley optical response behaviour. This multivalley optical behaviour enables the brominated guanidinium-based hybrid perovskites to exhibit broad light harvesting abilities, and this can be perceived as an idea for natural multi-junction solar cells.
  •  
14.
  • Banerjee, Amitava, et al. (författare)
  • Identifying the tuning key of disproportionation redox reaction in terephthalate : A Li-based anode for sustainable organic batteries
  • 2018
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855 .- 2211-3282. ; 47, s. 301-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The ever-increasing consumption of energy storage devices has pushed the scientific community to realize strategies toward organic electrodes with superior properties. This is owed to advantages such as economic viability and eco-friendliness. In this context, the family of conjugated dicarboxylates has emerged as an interesting candidate for the application as negative electrodes in advanced Li-ion batteries due to the revealed thermal stability, rate capability, high capacity and high cyclability. This work aims to rationalize the effects of small molecular modifications on the electrochemical properties of the terephthalate anode by means of first principles calculations. The crystal structure prediction of the investigated host compounds dilithium terephthalate (Li2TP) and diethyl terephthalate (Et2Li0TP) together with their crystal modification upon battery cycling enable us to calculate the potential profile of these materials. Distinct underlying mechanisms of the redox reactions were obtained where Li2TP comes with a disproportionation reaction while Et2Li0TP displays sequential redox reactions. This effect proved to be strongly correlated to the Li coordination number evolution upon the Li insertion into the host structures. Finally, the calculations of sublimation enthalpy inferred that polymerization techniques could easily be employed in Et2Li0TP as compared to Li2TP. Similar results are observed with methyl, propyl, and vinyl capped groups. That could be a strategy to enhance the properties of this compound placing it into the gallery of the new anode materials for state of art Li-batteries.
  •  
15.
  • Banerjee, Amitava (författare)
  • Materials Modelling for Energy Harvesting : From Conversion to Application through Storage
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this Ph.D. thesis, ab initio density functional theory along with molecular dynamics and global optimization methods are used to unveil and understand the structures and properties of energy relevant materials. In this connection, the following applications are considered: i. electrocatalyst for solar fuel production through water splitting, ii. hybrid perovskite solar cell for generation of electrical energy and iii. Battery materials to store the electrical energy. The water splitting mechanism in terms of hydrogen evolution and oxygen evolution reactions (HER and OER) on the catalytic surfaces has been envisaged based on the free energy diagram, named reaction coordinate, of the reaction intermediates. The Ti-functionalized two-dimensional (2D) borophene monolayer has been emerged as a promising material for HER and OER mechanisms as compared to the pristine borophene sheet. Further investigation in the series of this noble metal free monolayer catalyst is 2D Al2C monolayer both in form of pristine and functionalized with nitrogen (N), phosphorous (P), boron (B), and sulphur (S). It has been observed that only B substituted Al2C shows very close to thermoneutral, that could be the most promising candidate for HER on functionalized Al2C monolayer. The adsorption of O* intermediate is stronger in S-substituted Al2C, whereas it is less strongly adsorbed on N-substituted Al2C. The subsequent consideration is being the case of n-type doping (W) along with Ti codoped in BiVO4 to enhance the efficiency of BiVO4 photoanode for water splitting. The determined adsorption energy and corresponding Gibbs free energies depict that the Ti site is energetically more favorable for water splitting. Moreover, the Ti site possesses a lower overpotential in the W–Ti codoped sample as compared to the mono-W doped sample. We have also explored the effect of mixed cation and mixed anion substitution in the hybrid perovskite in terms of structural stability, electronic properties and optical response of hybrid perovskite crystal structures. It has been found that the insertion of bromine (Br) into the system could modulate the stability of the Guanidinium lead iodide (GAPbI3) hybrid perovskite.  Moreover, the band gap of the mixed hybrid perovskite is increased with the inclusion of smaller Br anion while replacing partially the larger iodine (I) anion. Finally the electrochemical storage mechanism for Sodium (Na) and lithium (Li) ion insertion has been envisaged in inorganic electrode (eldfellite, NaFe(SO4)2) as well as in more sustainable organic electrode (di-lithium terephthalate, Li2TP). The full desodiation capability of the eldfellite enhances the capacity while the activation energies (higher than 1 eV) for the Na+ ion diffusion for the charged state lower the ionic insertion rate. The key factor as the variation of Li-O coordination in the terephthalate, for the disproportionation redox reaction in Li2TP is also identified.
  •  
16.
  • Banerjee, Amitava, et al. (författare)
  • Promise and reality of organic electrodes from materials design and charge storage perspective
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:29, s. 15215-15234
  • Forskningsöversikt (refereegranskat)abstract
    • Organic electrode materials are becoming increasingly important as they reduce the C-footprint as well as the production cost of currently used and studied rechargeable batteries. With increasing demand for high-energy-density devices, over the past few decades, various innovative new materials based on the fundamental structure-property relationships and molecular design have been explored to enable high-capacity next-generation battery chemistries. One critical dimension that catalyzes this study is the building up of an in-depth understanding of the structure-property relationship and mechanism of alkali ion batteries. In this review, we present a critical overview of the progress in the technical feasibility of organic battery electrodes for use in long-term and large-scale electrical energy-storage devices based on the materials designing, working mechanisms, performance, and battery safety. Specifically, we discuss the underlying alkali ion storage mechanisms in specific organic batteries, which could provide the designing requirements to overcome the limitations of organic batteries. We also discuss the promising future research directions in the field of alkali ion organic batteries, especially multivalent organic batteries along with monovalent alkali ion organic batteries.
  •  
17.
  •  
18.
  • Banerjee, Amitava, et al. (författare)
  • Rashba Triggered Electronic and Optical Properties Tuning in Mixed Cation-Mixed Halide Hybrid Perovskites
  • 2019
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 2:10, s. 6990-6997
  • Tidskriftsartikel (refereegranskat)abstract
    • The inherent spin-orbit coupling (SOC) effect in non-centrosymmetric crystal structure has laid the foundation of Rashba splitting phenomena. This Rashba splitting directly governs the charge carrier recombination, which eventually controls the carrier lifetime and diffusion length and therefore the solar cell efficiency for such hybrid perovskite materials. In this work, we have performed a rigorous structural search prediction of the mixed cation-mixed halide hybrid perovskites FA(0.83)MA(0.17)Pb(I0.83Br0.17)(3) and FA(0.875)MA(0.125 )Pb(I0.875Br (0.125))(3), which are the two nearest neighbor structures of record efficiency (22.1%) holder FA(0.85)MA(0.15)Pb(I0.85Br0.15)(3) in the structural composition phase space. We have found the prediction routes for a structural search such as the mixed perovskite structure govern the Rashba splitting energy value, depending on whether it has been predicted from FPI (FAPbI(3)) or MPB (MAPbBr(3)) as parent structure, which are leading to the mixed phase FA(0.83)MA(0.17)Pb(I0.83Br0.17)(3) and FA(0.875)MA(0.125)Pb(I0.875Br0.125)(3) respectively. The strong dependency of the splitting energy on the structural phase evolution along with the stoichiometry and space group is also observed, where in the mixed phase, 0.045 difference in concentration could lead to a remarkable difference in the splitting energy, which is more pronounced in the valence band as compared to the conduction band. We have also determined the Goldschmidt tolerance factor to envisage structural stability of the newly predicted crystal structures based on the corresponding chemical route in the composition phase space.
  •  
19.
  • Banerjee, Amitava, et al. (författare)
  • Reaction Coordinate Mapping of Hydrogen Evolution Mechanism on Mg3N2Monolayer
  • 2020
  • Ingår i: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199 .- 1879-3487.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In this work, we have envisaged the hydrogen evolution reaction (HER) mechanism on Mg3N2 monolayer based on electronic structure calculations within the framework of density functional theory (DFT) formalism. The semiconducting nature of Mg3N2 monolayer motivates us to investigate the HER mechanism on this sheet. We have constructed the reaction coordinate associated with HER mechanism after determining the hydrogen adsorption energy on Mg3N2 monolayer, while investigating all possible adsorption sites. After obtaining the adsorption energy, we subsequently obtain the adsorption free energy while adding zero point energy difference (Delta ZPE) and entropic contribution (T Delta S). We have not only confined our investigations to a single hydrogen, but have thoroughly observed the adsorption phenomena for increasing number of hydrogen atoms on the surface. We have determined the projected density of states (DOS) in order to find the elemental contribution in the valence band and conduction band regime for all the considered cases. We have also compared the work function value among all the cases, which quantifies the amount of energy required for taking an electron out of the surface. The charge transfer mechanism is also being investigated in order to correlate with the HER mechanism with amount of charge transfer. This is the first attempt on this material to the best of our knowledge, where theoretical investigation has been done to mapping the reaction coordinate of HER mechanism with the associated charge transfer process and the work function values, not only for single hydrogen adsorption, but also for increasing number of adsorbed hydrogen.
  •  
20.
  • Banerjee, Amitava, et al. (författare)
  • Scrupulous Probing of Bifunctional Catalytic Activity of Borophene Monolayer : Mapping Reaction Coordinate with Charge Transfer
  • 2018
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 1:8, s. 3571-3576
  • Tidskriftsartikel (refereegranskat)abstract
    • We have envisaged the hydrogen evolution and oxygen evolution reactions (HER and OER) on two-dimensional (2D) noble metal free borophene monolayer based on first-principles electronic structure calculations. We have investigated the effect of Ti functionalization on borophene monolayer from the perspective of HER and OER activities enhancement. We have probed the activities based on the reaction coordinate, which is conceptually related to the adsorption free energies of the intermediates of HER and OER, as well as from the vibrational frequency analysis with the corresponding charge transfer mechanism between the surface and the adsorbate. Tifunctionalized borophene has emerged as a promising material for HER and OER mechanisms. We believe that our probing method, based on reaction coordinate coupled with vibrational analysis that has been validated by the charge transfer mechanism, would certainly become as a robust prediction route for HER and OER mechanisms in coming days.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 56
Typ av publikation
tidskriftsartikel (49)
annan publikation (3)
forskningsöversikt (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (50)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Banerjee, Amitava (55)
Ahuja, Rajeev (19)
Ahuja, Rajeev, 1965- (18)
Chakraborty, Sudip (16)
Dandona, Lalit (11)
Dandona, Rakhi (11)
visa fler...
Khang, Young-Ho (11)
Vos, Theo (11)
Yonemoto, Naohiro (11)
Kim, Daniel (11)
Feigin, Valery L. (10)
Jonas, Jost B. (10)
Kokubo, Yoshihiro (10)
Kumar, G. Anil (10)
Lopez, Alan D. (10)
Malekzadeh, Reza (10)
Miller, Ted R. (10)
Mokdad, Ali H. (10)
Naghavi, Mohsen (10)
Sepanlou, Sadaf G. (10)
Werdecker, Andrea (10)
Murray, Christopher ... (10)
Kinfu, Yohannes (10)
Santos, Itamar S. (10)
Sawhney, Monika (10)
Gupta, Rahul (10)
Bedi, Neeraj (10)
Weiderpass, Elisabet ... (9)
Farzadfar, Farshad (9)
Geleijnse, Johanna M ... (9)
Lotufo, Paulo A. (9)
Mendoza, Walter (9)
Vollset, Stein Emil (9)
Yu, Chuanhua (9)
Bennett, Derrick A. (9)
Kosen, Soewarta (9)
Mensah, George A. (9)
Rafay, Anwar (9)
Salomon, Joshua A. (9)
Shiue, Ivy (9)
Singh, Jasvinder A. (9)
Yano, Yuichiro (9)
Gupta, Rajeev (9)
Basu, Sanjay (9)
She, Jun (9)
Meretoja, Atte (9)
Nguyen, Grant (9)
Ammar, Walid (9)
Harb, Hilda L (9)
Hosgood, H Dean (9)
visa färre...
Lärosäte
Uppsala universitet (49)
Kungliga Tekniska Högskolan (26)
Karolinska Institutet (16)
Lunds universitet (7)
Högskolan Dalarna (7)
Göteborgs universitet (6)
visa fler...
Umeå universitet (3)
Mittuniversitetet (3)
Södertörns högskola (3)
Chalmers tekniska högskola (3)
Stockholms universitet (2)
Karlstads universitet (2)
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (56)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Medicin och hälsovetenskap (16)
Teknik (6)
Samhällsvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy