SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bertini E) "

Sökning: WFRF:(Bertini E)

  • Resultat 31-40 av 108
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Gicquel, A., et al. (författare)
  • Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras on board Rosetta
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 462, s. S57-S66
  • Tidskriftsartikel (refereegranskat)abstract
    • Beginning in 2014 March, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analysed the dust monitoring observations shortly after the southern vernal equinox on 2015 May 30 and 31 with the WAC at the heliocentric distance R-h = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this paper was that through the sublimation of the aggregates of dirty grains (radius a between 5 and 50 mu m) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data, we needed to inject a number of aggregates between 8.5 x 10(13) and 8.5 x 10(10) for a = 5 and 50 mu m, respectively, or an initial mass of H2O ice around 22 kg.
  •  
32.
  • Guettler, C., et al. (författare)
  • Characterization of dust aggregates in the vicinity of the Rosetta spacecraft
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S312-S320
  • Tidskriftsartikel (refereegranskat)abstract
    • In a Rosetta/OSIRIS imaging activity in 2015 June, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS wide angle camera, these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 109 dust aggregates over a 130 min long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. In the likeliest of the three scenarios, centimetre-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel (remote instrument viewing direction) when rotated towards the Sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the Sun and can be explain by a rocket effect, which requires a minimum ice fraction of the order of 0.1 per cent.
  •  
33.
  • Ip, W. -H, et al. (författare)
  • Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to characterize the circular depressions of comet 67P/Churyumov-Gerasimenko and investigate whether such surface morphology of a comet nucleus is related to the cumulative sublimation effect since becoming a Jupiter family comet (JFC). Methods. The images from the Rosetta/OSIRIS science camera experiment are used to construct size frequency distributions of the circular depression structures on comet 67P and they are compared with those of the JFCs 81P/Wild 2, 9P/Tempel 1, and 103P/Hartley 2. The orbital evolutionary histories of these comets over the past 100 000 yr are analyzed statistically and compared with each other. Results. The global distribution of the circular depressions over the surface of 67P is charted and classified. Descriptions are given to the characteristics and cumulative size frequency distribution of the identified features. Orbital statistics of the JFCs visited by spacecraft are derived. Conclusions. The size frequency distribution of the circular depressions is found to have a similar power law distribution to those of 9P/Tempel 1 and 81P/Wild 2. This might imply that they could have been generated by the same process. Orbital integration calculation shows that the surface erosion histories of 81P/Wild 2, and 9P/Tempel 1 could be shorter than those of 67P, 103 P/Hartley 2 and 19P/Borrelly. From this point of view, the circular depressions could be dated back to the pre-JFC phase or the transneptunian phase of these comets. The north-south asymmetry in the distribution of the circular depressions could be associated with the heterogeneous structure of the nucleus of comet 67P and/or the solar insolation history.
  •  
34.
  • Jorda, L., et al. (författare)
  • The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations
  • 2016
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 277, s. 257-278
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta spacecraft reached Comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) in August 2014 at an heliocentric distance of 3.6 a.u. and was then put in orbit around its nucleus to perform detailed observations. Among the collected data are the images acquired by the OSIRIS instrument up to the perihelion passage of the comet in August 2015, which allowed us to map the entire nucleus surface at high-resolution in the visible. Stereophotoclinometry methods have been used to reconstruct a global high-resolution shape model and to monitor its rotational parameters using data collected up to perihelion. The nucleus has a conspicuous bilobate shape with overall dimensions along its principal axes of (4.34 +/- 0.02) x (2.60 +/- 0.02) x (2.12 +/- 0.06) km. The best-fit ellipsoid dimensions of the individual lobes along their principal axes of inertia are found to be 4.10 x 3.52 x 1.63 km and 2.50 x 2.14 x 1.641cm. Their volume amounts to 66% and 27% of the total volume of the nucleus. The two lobes are connected by a "neck" whose volume has been estimated to represent similar to 7% of the total volume of the comet. Combining the derived volume of 18.8 +/- 0.3 km(3) with the mass of 9.982 +/- 0.003 x 10(12) kg determined by the Rosetta/RSI experiment, we obtained a bulk density of the nucleus of 532 +/- 7 kg m(-3). Together with the companion value of 535 35 kg m-3 deduced from the stereophotogrammetry shape model of the nucleus (Preusker et al. [2015] Astron. Astrophys. 583, A33), these constitute the first reliable and most accurate determination of the density of a cometary nucleus to date. The calculated porosity is quite large, ranging approximately from 70% to 75% depending upon the assumed density of the dust grains and the dust-to-ice mass ratio. The nature of the porosity, either micro or macro or both, remains unconstrained. The coordinates of the center of gravity are not compatible with a uniform nucleus density. The direction of the offset between the center of gravity and the center of figure suggests that the big lobe has a slightly higher bulk density compared to the small one. the center of mass position cannot be explained by different, but homogenous densities in the two lobes. The initial rotational period of 12.4041 +/- 0.0001 h of the nucleus persisted until October 2014. It then slightly increased to a maximum of 12.4304h reached on 19 May 2015 and finally dropped to 12.305 h just before perihelion on August 10, 2015. A periodogram analysis of the (RA, Dec) direction of the Z-axis of the comet obtained in parallel with the shape reconstruction exhibits a highly significant minima at 11.5 +/- 0.5 day clearly indicating an excited rotational state with an amplitude of 0.15 +/- 0.03 degrees.
  •  
35.
  • Keller, H. U., et al. (författare)
  • E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 327:5962, s. 190-193
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency's Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.
  •  
36.
  • Keller, H. U., et al. (författare)
  • Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The complex shape of comet 67P and its oblique rotation axis cause pronounced seasonal effects. Irradiation and hence activity vary strongly. Aims. We investigate the insolation of the cometary surface in order to predict the sublimation of water ice. The strongly varying erosion levels are correlated with the topography and morphology of the present cometary surface and its evolution. Methods. The insolation as a function of heliocentric distance and diurnal (spin dependent) variation is calculated using >10(5) facets of a detailed digital terrain model. Shading, but also illumination and thermal radiation by facets in the field of view of a specific facet are iteratively taken into account. We use a two-layer model of a thin porous dust cover above an icy surface to calculate the water sublimation, presuming steady state and a uniform surface. Our second model, which includes the history of warming and cooling due to thermal inertia, is restricted to a much simpler shape model but allows us to test various distributions of active areas. Results. Sublimation from a dirty ice surface yields maximum erosion. A thin dust cover of 50 pm yields similar rates at perihelion. Only about 6% of the surface needs to be active to match the observed water production rates at perihelion. A dust layer of 1 mm thickness suppresses the activity by a factor of 4 to 5. Erosion on the south side can reach more than 10 m per orbit at active spots. The energy input to the concave neck area (Hapi) during northern summer is enhanced by about 50% owing to self-illumination. Here surface temperatures reach maximum values along the foot of the Hathor wall. Integrated over the whole orbit this area receives the least energy input. Based on the detailed shape model, the simulations identify "hot spots" in depressions and larger pits in good correlation with observed dust activity. Three-quarters of the total sublimation is produced while the sub-solar latitude is south, resulting in a distinct dichotomy in activity and morphology. Conclusions. The northern areas display a much rougher morphology than what is seen on Imhotep, an area at the equator that will be fully illuminated when 67P is closer to the Sun. Self-illumination in concave regions enhance the energy input and hence erosion. This explains the early activity observed at Hapi. Cliffs are more prone to erosion than horizontal, often dust covered, areas, which leads to surface planation. Local activity can only persist if the forming cliff walls are eroding. Comet 67P has two lobes and also two distinct sides. Transport of material from the south to the north is probable. The morphology of the Imhotep plain should be typical for the terrains of the yet unseen southern hemisphere.
  •  
37.
  • Keller, H. U., et al. (författare)
  • Seasonal mass transfer on the nucleus of comet 67P/Chuyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S357-S371
  • Tidskriftsartikel (refereegranskat)abstract
    • We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is four times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the active south. Decimetre sized chunks contain water ice and their trajectories are influenced by an antisolar force instigated by sublimation. OSIRIS observations suggest that up to 20 per cent of the particles directly return to the nucleus surface taking several hours of traveltime. The back fall covered northern areas are active if illuminated but produce mainly water vapour. The decimetre chunks from the nucleus surface are too small to contain more volatile compounds such as CO2 or CO. This causes a north-south dichotomy of the composition measurements in the coma. Active particles are trapped in the gravitational minimum of Hapi during northern winter. They are 'shock frozen' and only re-activated when the comet approaches the sun after its aphelion passage. The insolation of the big cavity is enhanced by self-heating, i.e. reflection and IR radiation from the walls. This, together with the pristinity of the active back fall, explains the early observed activity of the Hapi region. Sobek may be a role model for the consolidated bottom of Hapi. Mass transfer in the case of 67P strongly influences the evolution of the nucleus and the interpretation of coma measurements.
  •  
38.
  • La Forgia, F., et al. (författare)
  • Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae's landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of similar to 15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.
  •  
39.
  • Lin, Zhong-Yi, et al. (författare)
  • Investigating the physical properties of outbursts on comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S731-S740
  • Tidskriftsartikel (refereegranskat)abstract
    • Cometary outbursts on several comets have been observed both by ground-based telescopes and by in situ instruments on spacecraft. However, the mechanism behind these phenomena and their physical properties are still unclear. The optical, spectrocopic and infrared remote imaging system (OSIRIS) onboard the Rosetta spacecraft provided first-hand information on the outbursts from comet 67P/Churyumov-Gerasimenko during its perihelion passage in 2015. The physical properties of the outbursts can be investigated by examining the time series of these high-resolution images. An analysis is made of the wide- and narrow-angle images obtained during the monitoring of the outburst sequences, which occurred between July and September in 2015. A ring-masking technique is used to calculate the excess brightness of the outbursts. The ejected mass and expansion velocity of the outbursts is estimated from differences in images made with the same filter (orange filter). The calculated excess brightness from these outburst plumes ranges from a few per cent to 28 per cent. In some major outbursts, the brightness contribution from the outburst plume can be one or two times higher than that of the typical coma jet activities. The strongest event was the perihelion outburst detected just a few hours before perihelion. The mass ejection rate during a generic outburst could reach a few per cent of the steady-state value of the dust coma. Transient events are detected by studying the brightness slope of the outburst plume with continuous streams of outflowing gas and dust triggered by driving mechanisms, as yet not understood, which remain active for several minutes to less than a few hours.
  •  
40.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 108
Typ av publikation
tidskriftsartikel (106)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (105)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Barbieri, C. (77)
Bertini, I. (77)
Thomas, N (76)
Sierks, H. (76)
Rodrigo, R. (76)
Koschny, D. (76)
visa fler...
Bertaux, J. -L (76)
Da Deppo, V. (76)
Fornasier, S. (76)
Groussin, O. (76)
Knollenberg, J. (76)
Lazzarin, M. (76)
Cremonese, G. (75)
De Cecco, M. (75)
Jorda, L. (75)
Marzari, F. (75)
Naletto, G. (75)
Tubiana, C. (74)
Barucci, M. A. (74)
Debei, S. (74)
Fulle, M. (74)
Keller, H. U. (74)
Vincent, J. -B (73)
Oklay, N. (72)
Rickman, Hans (70)
Hviid, S. F. (70)
Gutierrez, P. J. (69)
Kuehrt, E. (68)
Guettler, C. (67)
Ip, W. -H (67)
A'Hearn, M. F. (66)
Kramm, J. -R (64)
Lopez Moreno, J. J. (60)
Mottola, S. (60)
Lara, L. M. (59)
Pajola, M. (59)
Lamy, P. L. (52)
Agarwal, J. (50)
Kovacs, G (42)
Davidsson, Björn (40)
Kueppers, M. (39)
Scholten, F. (39)
Preusker, F. (38)
Shi, X. (36)
Hofmann, M. (36)
Bodewits, D. (36)
Kuppers, M. (36)
Deller, J. (35)
El-Maarry, M. R. (33)
Massironi, M. (31)
visa färre...
Lärosäte
Uppsala universitet (78)
Karolinska Institutet (15)
Lunds universitet (6)
Kungliga Tekniska Högskolan (5)
Göteborgs universitet (4)
Umeå universitet (3)
visa fler...
Chalmers tekniska högskola (3)
Linköpings universitet (1)
Mittuniversitetet (1)
Högskolan i Skövde (1)
Marie Cederschiöld högskola (1)
visa färre...
Språk
Engelska (107)
Franska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (86)
Medicin och hälsovetenskap (9)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy