SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buitink S.) "

Sökning: WFRF:(Buitink S.)

  • Resultat 11-20 av 83
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Abbasi, R., et al. (författare)
  • An improved method for measuring muon energy using the truncated mean of dE/dx
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 703, s. 190-198
  • Tidskriftsartikel (refereegranskat)abstract
    • The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eμ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eμ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eμ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.
  •  
12.
  • Abbasi, R., et al. (författare)
  • Lateral distribution of muons in IceCube cosmic ray events
  • 2013
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:1, s. 012005-
  • Tidskriftsartikel (refereegranskat)abstract
    • In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high p(T) (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard p(T) component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations. DOI: 10.1103/PhysRevD.87.012005
  •  
13.
  • Abbasi, R., et al. (författare)
  • Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors
  • 2012
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 85, s. 042002-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50-5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.
  •  
14.
  • Abbasi, R., et al. (författare)
  • Search for relativistic magnetic monopoles with IceCube
  • 2013
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:2, s. 022001-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km(3). This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km(3) of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of Phi(90%C.L.) similar to 3 x 10(-18) cm(-2) sr(-1) s(-1) for beta >= 0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost gamma below 10(7). This result is then interpreted for a wide range of mass and kinetic energy values.
  •  
15.
  • Abbasi, R., et al. (författare)
  • Search for ultrahigh-energy tau neutrinos with IceCube
  • 2012
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 86:2, s. 022005-
  • Tidskriftsartikel (refereegranskat)abstract
    • The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0: 25 km(3). The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60 +/- 0.19(stat)(-0.58)(+0.56)(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E-v(2)Phi(90)(v(x)) < 16.3 x 10(-8) GeV cm(-2) sr(-1) s(-1) over an estimated primary neutrino energy range of 340 TeV to 200 PeV.
  •  
16.
  • Abbasi, R., et al. (författare)
  • Searches for high-energy neutrino emission in the galaxy with the combined icecube-amanda detector
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 763:1, s. 33-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on searches for neutrino sources at energies above 200 GeV in the Northern sky of the Galactic plane, using the data collected by the South Pole neutrino telescope, IceCube, and AMANDA. The Galactic region considered in this work includes the local arm toward the Cygnus region and our closest approach to the Perseus Arm. The searches are based on the data collected between 2007 and 2009. During this time AMANDA was an integrated part of IceCube, which was still under construction and operated with 22 strings (2007-2008) and 40 strings (2008-2009) of optical modules deployed in the ice. By combining the advantages of the larger IceCube detector with the lower energy threshold of the more compact AMANDA detector, we obtain an improved sensitivity at energies below ∼10 TeV with respect to previous searches. The analyses presented here are a scan for point sources within the Galactic plane, a search optimized for multiple and extended sources in the Cygnus region, which might be below the sensitivity of the point source scan, and studies of seven pre-selected neutrino source candidates. For one of them, Cygnus X-3, a time-dependent search for neutrino emission in coincidence with observed radio and X-ray flares has been performed. No evidence of a signal is found, and upper limits are reported for each of the searches. We investigate neutrino spectra proportional to E -2 and E -3 in order to cover the entire range of possible neutrino spectra. The steeply falling E -3 neutrino spectrum can also be used to approximate neutrino energy spectra with energy cutoffs below 50 TeV since these result in a similar energy distribution of events in the detector. For the region of the Galactic plane visible in the Northern sky, the 90% confidence level muon neutrino flux upper limits are in the range E 3 dN/dE ∼ 5.4-19.5 × 10-11 TeV2 cm-2 s-1 for point-like neutrino sources in the energy region [180.0 GeV-20.5 TeV]. These represent the most stringent upper limits for soft-spectra neutrino sources within the Galaxy reported to date.
  •  
17.
  • Abbasi, R., et al. (författare)
  • Measurement of the anisotropy of cosmic-ray arrival directions with icecube
  • 2010
  • Ingår i: The Astrophysical Journal Letters. - 2041-8205. ; 718, s. L194-L198
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of similar to 20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 +/- 0.2 stat. +/- 0.8 syst.) x 10(-4).
  •  
18.
  • Abbasi, R., et al. (författare)
  • Neutrino Analysis of the 2010 September Crab Nebula Flare and Time-Integrated Constraints on Neutrino Emission from the Crab Using Icecube
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1, s. 45-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for high-energy muon neutrinos with the IceCube detector in coincidence with the Crab Nebula flare reported on 2010 September by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed. gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E-upsilon(2). neutrino spectrum typical of first-order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cutoffs as observed for various Galactic sources in. gamma-rays. The 90% confidence level (CL) best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(-11) cm(-2) s(-1) TeV-1 for an E-upsilon(2). neutrino spectrum and 2.50 x 10(-10) cm(-2) s(-1) TeV-1 for a softer neutrino spectra of E-upsilon(-2.7), as indicated by Fermi measurements during the flare. In this paper, we also illustrate the impact of the time-integrated limit on the Crab neutrino steady emission. The limit obtained using 375.5 days of the 40-string configuration is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.
  •  
19.
  • Abbasi, R., et al. (författare)
  • Observation of anisotropy in the arrival directions of galactic cosmic rays at multiple angular scales with IceCube
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 740:1, s. 16-
  • Tidskriftsartikel (refereegranskat)abstract
    • Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15 degrees and 30 degrees. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension alpha = 122 degrees.4 and declination d = -47 degrees.4), extends over at least 20 degrees in right ascension and has a post-trials significance of 5.3 sigma. The origin of this anisotropy is still unknown.
  •  
20.
  • Abbasi, R., et al. (författare)
  • Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector
  • 2011
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 84:8, s. 082001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory is a 1 km(3) detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C. L. upper limit on the normalization of an E(-2) astrophysical nu(mu) flux of 8.9 x 10(-9) GeV cm(-2) s(-1) sr(-1). The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 83

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy