SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buitink S.) "

Sökning: WFRF:(Buitink S.)

  • Resultat 61-70 av 83
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Hare, B. M., et al. (författare)
  • LOFAR Lightning Imaging : Mapping Lightning With Nanosecond Precision
  • 2018
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 123:5, s. 2861-2876
  • Tidskriftsartikel (refereegranskat)abstract
    • Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20km outside the area enclosed by LOFAR antennas (approximate to 3,200km(2)), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
  •  
62.
  • Horandel, Jorg R., et al. (författare)
  • The mass composition of cosmic rays measured with LOFAR
  • 2017
  • Ingår i: RICAP16, 6TH ROMA INTERNATIONAL CONFERENCE ON ASTROPARTICLE PHYSICS. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • High-energy cosmic rays, impinging on the atmosphere of the Earth initiate cascades of secondary particles, the extensive air showers. The electrons and positrons in the air shower emit electromagnetic radiation. This emission is detected with the LOFAR radio telescope in the frequency range from 30 to 240 MHz. The data are used to determine the properties of the incoming cosmic rays. The radio technique is now routinely used to measure the arrival direction, the energy, and the particle type (atomic mass) of cosmic rays in the energy range from 10(17) to 10(18) eV. This energy region is of particular astrophysical interest, since in this regime a transition from a Galactic to an extra-galactic origin of cosmic rays is expected. For illustration, the LOFAR results are used to set constraints on models to describe the origin of high-energy cosmic rays.
  •  
63.
  • Mulrey, K., et al. (författare)
  • Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain
  • 2019
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio emission from extensive air showers, yielding information about the primary cosmic ray. Interpreting the measured data requires an absolute and frequency-dependent calibration of the LOFAR system response. This is particularly important for spectral analyses, because the shape of the detected signal holds information about the shower development. We revisit the calibration of the LOFAR antennas in the range of 30-80 MHz. Using the Galactic emission and a detailed model of the LOFAR signal chain, we find an improved calibration that provides an absolute energy scale and allows for the study of frequency dependent features in measured signals. With the new calibration, systematic uncertainties of 13% are reached, and comparisons of the spectral shape of calibrated data with simulations show promising agreement. (C) 2019 Elsevier B.V. All rights reserved.
  •  
64.
  • Mulrey, K., et al. (författare)
  • Expansion of the LOFAR radboud air shower array
  • 2018
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The LOFAR Radboud Air Shower Array (LORA) consists of 20 plastic scintillators and is situated at the core of the LOFAR radio telescope. LORA detects particles from extensive air showers and triggers the read-out of the LOFAR antennas. The dense LOFAR antenna spacing allows for detailed sampling of the radio emission generated in extensive air showers, which yields high precision reconstruction of cosmic ray properties and information about the shower development. We discuss the proposed expansion of LORA, including the addition of scintillator units and the implementation of triggering algorithms that will probe more details of the radio emission and detect lower energy showers without introducing a composition bias, which is important for studying the origin of cosmic rays.
  •  
65.
  • Mulrey, K., et al. (författare)
  • Updated Calibration of the LOFAR Low-Band Antennas
  • 2019
  • Ingår i: 8th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2018). - : EDP Sciences. - 9782759890804 ; , s. 1-3
  • Konferensbidrag (refereegranskat)abstract
    • The LOw-Frequency ARray (LOFAR) telescope measures radio emission from air showers. In order to interpret the data, an absolute, frequency dependent calibration is required. Due to a growing need for a better understanding of the measured frequency spectrum, we revisit the calibration of the LOFAR antennas in the range of 30-80 MHz. Using the galactic radio emission and a detailed model of the LOFAR signal chain, we find a calibration that provides an absolute energy scale and allows us to study frequency dependent features in measured air shower signals.
  •  
66.
  • Nelles, A., et al. (författare)
  • A new way of air shower detection : measuring the properties of cosmic rays with LOFAR
  • 2015
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 632:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • High-energy cosmic rays impinging onto the atmosphere of the Earth initiate cascades of secondary particles: extensive air showers. Many of the particles in a shower are electrons and positrons. During the development of the air shower and by interacting with the geomagnetic field, the electromagnetic cascade creates radiation, which we detect at frequencies of tens of MHz with the LOFAR radio telescope in the Netherlands. After many years of struggling to understand the emission mechanisms, the radio community has achieved the breakthrough. We are now able to determine direction, energy, and type of the shower- inducing primary particle from the radio measurements. The large number of antennas at LOFAR allows us to have a high precision and very detailed measurements. We will elaborate on the shower reconstruction, a precise description of the intensity of the radio signal at ground level (at frequencies from 10 to 240 MHz), a precise measurement of the shape of the radio wavefront, and on the reconstruction of the shower energy.
  •  
67.
  •  
68.
  • Rossetto, L., et al. (författare)
  • Characterisation of the radio frequency spectrum emitted by high energy air showers with LOFAR
  • 2018
  • Ingår i: 35th International Cosmic Ray Conference, ICRC2017. - Trieste : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The high number density of radio antennas at the LOFAR core in Northern Netherlands allows to detect radio signals emitted by extensive air showers in the energy range 1016 - 1018 e V, and to characterise the geometry of the observed cascade in a detailed way. The radio signal emitted by extensive air showers along their propagation in the atmosphere has been studied in the 30 - 70 MHz frequency range. The study has been conducted on real data and simulated showers. Regarding real data, cosmic ray radio signals detected by LOFAR since 2011 have been analysed. For simulated showers, the CoREAS code, a plug-in of the CORSIKA particle simulation code, has been used. The results show a clear dependence of the frequency spectrum on the distance to the shower axis for both real data and simulations. In particular, the spectrum flatten at a distance around 100 m from the shower axis, where the coherence of the radio signal is maximum. This behaviour could also be used to reconstruct the position of the shower axis at ground. A correlation between the frequency spectrum and the geometrical distance to the depth of the shower maximum Xmax has also been investigated. The final aim of this study is to find a method to improve the inferred information of primary cosmic rays with radio antennas, in view of affirming the radio detection technique as reliable method for the study of extensive air showers. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0).
  •  
69.
  • Rossetto, L., et al. (författare)
  • Measurement of cosmic rays with LOFAR
  • 2016
  • Ingår i: XIV INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2015), PTS 1-7. - : Institute of Physics Publishing (IOPP).
  • Konferensbidrag (refereegranskat)abstract
    • The LOw Frequency ARay (LOFAR) is a multipurpose radio -antenna array aimed to detect radio signals in the 10 - 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic -ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio -signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio -signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 10(17) - 10(18) eV.
  •  
70.
  • Schellart, P., et al. (författare)
  • Polarized radio emission from extensive air showers measured with LOFAR
  • 2014
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 83

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy