SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chasman DI) "

Sökning: WFRF:(Chasman DI)

  • Resultat 51-60 av 67
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  •  
52.
  • Marouli, Eirini, et al. (författare)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
53.
  •  
54.
  •  
55.
  • Pulit, SL, et al. (författare)
  • Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study.
  • 2016
  • Ingår i: The Lancet. Neurology. - 1474-4465. ; 15:2, s. 174-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading genetic approach to the identification of novel biological pathways underlying diseases in humans. Until recently, GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes.To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the first stage, we included 16 851 cases with state-of-the-art phenotyping data and 32 473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained and certified investigators who used the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted fixed-effects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms identified from the first stage GWAS in 20 941 cases and 364 736 unique stroke-free controls. The ischaemic stroke subtypes of these cases had previously been established with the Trial of Org 10 172 in Acute Stroke Treatment (TOAST) classification system, in accordance with local standards. Results from the two stages were then jointly analysed in a final meta-analysis.We identified a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large artery atherosclerosis-related stroke (first stage odds ratio [OR] 1·21, 95% CI 1·13-1·30, p=4·50 × 10(-8); joint OR 1·19, 1·12-1·26, p=1·30 × 10(-9)). Our results also supported robust associations with ischaemic stroke for four other loci that have been reported in previous studies, including PITX2 (first stage OR 1·39, 1·29-1·49, p=3·26 × 10(-19); joint OR 1·37, 1·30-1·45, p=2·79 × 10(-32)) and ZFHX3 (first stage OR 1·19, 1·11-1·27, p=2·93 × 10(-7); joint OR 1·17, 1·11-1·23, p=2·29 × 10(-10)) for cardioembolic stroke, and HDAC9 (first stage OR 1·29, 1·18-1·42, p=3·50 × 10(-8); joint OR 1·24, 1·15-1·33, p=4·52 × 10(-9)) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously been associated with all ischaemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke (first stage OR 1·20, 1·12-1·28, p=6·82 × 10(-8); joint OR 1·17, 1·11-1·23, p=2·92 × 10(-9)). Other loci associated with stroke in previous studies, including NINJ2, were not confirmed.Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype specific. We identified a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke prevention. In view of the subtype-specificity of the associations detected, the rich phenotyping data available in the Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke.US National Institute of Neurological Disorders and Stroke, National Institutes of Health.
  •  
56.
  •  
57.
  •  
58.
  • Sarwar, Nadeem, et al. (författare)
  • Interleukin-6 receptor pathways in coronary heart disease : a collaborative meta-analysis of 82 studies
  • 2012
  • Ingår i: The Lancet. - New York, NY, USA : Elsevier. - 0140-6736 .- 1474-547X. ; 379:9822, s. 1205-1213
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Persistent inflammation has been proposed to contribute to various stages in the pathogenesis of cardiovascular disease. Interleukin-6 receptor (IL6R) signalling propagates downstream inflammation cascades. To assess whether this pathway is causally relevant to coronary heart disease, we studied a functional genetic variant known to affect IL6R signalling. Methods: In a collaborative meta-analysis, we studied Asp358Ala (rs2228145) in IL6R in relation to a panel of conventional risk factors and inflammation biomarkers in 125 222 participants. We also compared the frequency of Asp358Ala in 51 441 patients with coronary heart disease and in 136 226 controls. To gain insight into possible mechanisms, we assessed Asp358Ala in relation to localised gene expression and to postlipopolysaccharide stimulation of interleukin 6. Findings: The minor allele frequency of Asp358Ala was 39%. Asp358Ala was not associated with lipid concentrations, blood pressure, adiposity, dysglycaemia, or smoking (p value for association per minor allele >= 0.04 for each). By contrast, for every copy of 358Ala inherited, mean concentration of IL6R increased by 34.3% (95% CI 30.4-38.2) and of interleukin 6 by 14.6% (10.7-18.4), and mean concentration of C-reactive protein was reduced by 7.5% (5.9-9.1) and of fibrinogen by 1.0% (0.7-1.3). For every copy of 358Ala inherited, risk of coronary heart disease was reduced by 3.4% (1.8-5.0). Asp358Ala was not related to IL6R mRNA levels or interleukin-6 production in monocytes. Interpretation: Large-scale human genetic and biomarker data are consistent with a causal association between IL6R-related pathways and coronary heart disease.
  •  
59.
  •  
60.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 67

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy