SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Yilun) "

Sökning: WFRF:(Chen Yilun)

  • Resultat 11-20 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Dahlgren, Malin, et al. (författare)
  • Preexisting Somatic Mutations of Estrogen Receptor Alpha (ESR1) in Early-Stage Primary Breast Cancer
  • 2021
  • Ingår i: JNCI Cancer Spectrum. - : Oxford University Press (OUP). - 2515-5091. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • More than three-quarters of primary breast cancers are positive for estrogen receptor alpha (ER; encoded by the gene ESR1), the most important factor for directing anti-estrogenic endocrine therapy (ET). Recently, mutations in ESR1 were identified as acquired mechanisms of resistance to ET, found in 12% to 55% of metastatic breast cancers treated previously with ET. We analyzed 3217 population-based invasive primary (nonmetastatic) breast cancers (within the SCAN-B study, ClinicalTrials.gov NCT02306096), sampled from initial diagnosis prior to any treatment, for the presence of ESR1 mutations using RNA sequencing. Mutations were verified by droplet digital polymerase chain reaction on tumor and normal DNA. Patient outcomes were analyzed using Kaplan-Meier estimation and a series of 2-factor Cox regression multivariable analyses. We identified ESR1 resistance mutations in 30 tumors (0.9%), of which 29 were ER positive (1.1%). In ET-treated disease, presence of ESR1 mutation was associated with poor relapse-free survival and overall survival (2-sided log-rank test P < .001 and P = .008, respectively), with hazard ratios of 3.00 (95% confidence interval = 1.56 to 5.88) and 2.51 (95% confidence interval = 1.24 to 5.07), respectively, which remained statistically significant when adjusted for other prognostic factors. These population-based results indicate that ESR1 mutations at diagnosis of primary breast cancer occur in about 1% of women and identify for the first time in the adjuvant setting that such preexisting mutations are associated to eventual resistance to standard hormone therapy. If replicated, tumor ESR1 screening should be considered in ER-positive primary breast cancer, and for patients with mutated disease, ER degraders such as fulvestrant or other therapeutic options may be considered as more appropriate.
  •  
12.
  • Dobilas, Arturas, et al. (författare)
  • Preoperative circulating tumor DNA level is associated to poor overall survival in patients with ovarian cancer
  • 2022
  • Ingår i: International Journal of Gynecological Cancer. - 1048-891X. ; 32:Suppl 2, s. 405-405
  • Konferensbidrag (refereegranskat)abstract
    • Introduction/BackgroundCirculating tumor DNA (ctDNA), which is shed from tumor cells into the blood, is a promising minimal-invasive method for cancer diagnostics and monitoring. The aim of this study was to evaluate preoperative ctDNA levels in the plasma of patients with ovarian cancer and correlate the levels to clinico-pathological parameters and patient outcome.MethodologyTumor DNA was extracted from ovarian tumor tissue from 41 patients. Targeted sequencing using a panel of 127 genes recurrently mutated in cancer was performed to identify candidate somatic mutations in the tumor DNA. SAGAsafe digital PCR (dPCR) assays targeting the candidate mutations were used to measure ctDNA levels in patient plasma samples, obtained prior to surgery, to evaluate ctDNA levels in terms of mutant copy number/mL and variant allele frequency.ResultsSomatic mutations were found in 24 tumors, of which seven were from patients with borderline, and 17 with invasive cancer diagnosis. TP53 was the most frequently mutated gene. Fifteen of 24 patients had detectable ctDNA levels in pre-operative plasma. Plasma ctDNA mutant concentration increased with higher stage (p_trend
  •  
13.
  • Dobilas, Arturas, et al. (författare)
  • Preoperative ctDNA Levels Are Associated With Poor Overall Survival in Patients With Ovarian Cancer
  • 2023
  • Ingår i: Cancer Genomics & Proteomics. - 1790-6245. ; 20:6 suppl, s. 763-770
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND/AIM: Circulating tumor DNA (ctDNA), which is shed from cancer cells into the bloodstream, offers a potential minimally invasive approach for cancer diagnosis and monitoring. This research aimed to assess the preoperative ctDNA levels in ovarian tumors patients' plasma and establish correlations with clinicopathological parameters and patient prognosis.PATIENTS AND METHODS: Tumor DNA was extracted from ovarian tumor tissue from 41 patients. Targeted sequencing using a panel of 127 genes recurrently mutated in cancer was performed to identify candidate somatic mutations in the tumor DNA. SAGAsafe digital PCR (dPCR) assays targeting the candidate mutations were used to measure ctDNA levels in patient plasma samples, obtained prior to surgery, to evaluate ctDNA levels in terms of mutant copy number/ml and variant allele frequency.RESULTS: Somatic mutations were found in 24 tumor samples, 17 of which were from ovarian cancer patients. The most frequently mutated gene was TP53. Preoperative plasma ctDNA levels were detected in 14 of the 24 patients. With higher stage, plasma ctDNA mutant concentration increased (p for trend <0.001). The overall survival of cancer patients with more than 10 ctDNA mutant copies/ml in plasma was significantly worse (p=0.008).CONCLUSION: Pre-operative ctDNA measurement in ovarian cancer patients' plasma holds promise as a predictive biomarker for tumor staging and prognosis.
  •  
14.
  • Fu, Yunfei, et al. (författare)
  • Fundamental Characteristics of Tropical Rain Cell Structures as Measured by TRMM PR
  • 2020
  • Ingår i: Journal of Meteorological Research. - : Springer Science and Business Media LLC. - 2095-6037 .- 2198-0934. ; 34:6, s. 1129-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • Rain cells are the most elementary unit of precipitation system in nature. In this study, fundamental geometric and physical characteristics of rain cells over tropical land and ocean areas are investigated by using 15-yr measurements of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The rain cells are identified with a minimum bounding rectangle (MBR) method. The results indicate that about 50% of rain cells occur at length of about 20 km and width of 15 km. The proportion of rain cells with length > 200 km and width > 100 km is less than 1%. There is a a log-linear relationship between the mean length and width of rain cells. Usually, for the same horizontal geometric parameters, rain cells tend to be square horizontally and lanky vertically over land, while vertically squatty over ocean. The rainfall intensity of rain cells varies from 0.4 to 10 mm h(-1) over land to 0.4-8 mm h(-1) over ocean. Statistical results indicate that the occurrence frequency of rain cells decreases as the areal fraction of convective precipitation in rain cells increases, while such frequency remains almost invariant when the areal fraction of stratiform precipitation varies from 10% to 80%. The relationship between physical and geometric parameters of rain cells shows that the mean rain rate of rain cells is more frequently associated with the increase of their area, with the increasing rate over land greater than that over ocean. The results also illustrate that heavy convective rain rate prefers to occur in larger rain cells over land while heavy stratiform rain rate tends to appear in larger rain cells over ocean. For the same size of rain cells, the areal fraction and the contribution of convective precipitation are about 10%-15% higher over land than over ocean.
  •  
15.
  • Förnvik, Daniel, et al. (författare)
  • Detection of circulating tumor cells and circulating tumor DNA before and after mammographic breast compression in a cohort of breast cancer patients scheduled for neoadjuvant treatment
  • 2019
  • Ingår i: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 1573-7217 .- 0167-6806. ; 177:2, s. 447-455
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeIt is not known if mammographic breast compression of a primary tumor causes shedding of tumor cells into the circulatory system. Little is known about how the detection of circulating biomarkers such as circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) is affected by breast compression intervention.MethodsCTCs and ctDNA were analyzed in blood samples collected before and after breast compression in 31 patients with primary breast cancer scheduled for neoadjuvant therapy. All patients had a central venous access to allow administration of intravenous neoadjuvant chemotherapy, which enabled blood collection from superior vena cava, draining the breasts, in addition to sampling from a peripheral vein.ResultsCTC and ctDNA positivity was seen in 26% and 65% of the patients, respectively. There was a significant increase of ctDNA after breast compression in central blood (p = 0.01), not observed in peripheral testing. No increase related with breast compression was observed for CTC. ctDNA positivity was associated with older age (p = 0.05), and ctDNA increase after breast compression was associated with high Ki67 proliferating tumors (p = 0.04). CTCs were more abundant in central compared to peripheral blood samples (p = 0.04).ConclusionsThere was no significant release of CTCs after mammographic breast compression but more CTCs were present in central compared to peripheral blood. No significant difference between central and peripheral levels of ctDNA was observed. The small average increase in ctDNA after breast compression is unlikely to be clinically relevant. The results give support for mammography as a safe procedure from the point of view of CTC and ctDNA shedding to the blood circulation. The results may have implications for the standardization of sampling procedures for circulating tumor markers.
  •  
16.
  • Hill, William, et al. (författare)
  • Lung adenocarcinoma promotion by air pollutants
  • 2023
  • Ingår i: Nature. - 0028-0836. ; 616:7955, s. 159-167
  • Tidskriftsartikel (refereegranskat)abstract
    • A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1β. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.
  •  
17.
  • Li, Yanni, et al. (författare)
  • Mitochondrial heteroplasmic shifts reveal a positive selection of breast cancer
  • 2023
  • Ingår i: Journal of Translational Medicine. - 1479-5876. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Breast cancer is, despite screening, not always detected early enough and is together with other tumor types known to shed genetic information in circulation. Unlike single-copy nuclear DNA, mitochondrial DNA (mtDNA) copies range from 100s to 10,000s per cell, thus providing a potentially alternative to identify potential missing cancer information in circulation at an early stage.METHODS: To characterize mitochondrial mutation landscapes in breast cancer, whole mtDNA sequencing and bioinformatics analyses were performed on 86 breast cancer biopsies and 50 available matched baseline cancer-free whole blood samples from the same individuals, selected from a cohort of middle-aged women in Sweden. To determine whether the mutations can be detected in blood plasma prior to cancer diagnosis, we further designed a nested case-control study (n = 663) and validated the shortlisted mutations using droplet digital PCR.RESULTS: We detected different mutation landscapes between biopsies and matched whole blood samples. Compared to whole blood samples, mtDNA from biopsies had higher heteroplasmic mutations in the D-loop region (P = 0.02), RNR2 (P = 0.005), COX1 (P = 0.037) and CYTB (P = 0.006). Furthermore, the germline mtDNA mutations had higher heteroplasmy level than the lost (P = 0.002) and de novo mutations (P = 0.04). The nonsynonymous to synonymous substitution ratio (dN/dS) was higher for the heteroplasmic mutations (P = 7.25 × 10 -12) than that for the homoplasmic mutations, but the de novo (P = 0.06) and lost mutations (P = 0.03) had lower dN/dS than the germline mutations. Interestingly, we found that the critical regions for mitochondrial transcription: MT-HSP1 (odds ratio [OR]: 21.41), MT-TFH (OR: 7.70) and MT-TAS2 (OR: 3.62), had significantly higher heteroplasmic mutations than the rest of the D-loop sub-regions. Finally, we found that the presence of mt.16093T > C mutation increases 67% risk of developing breast cancer. CONCLUSIONS: Our findings show that mitochondrial genetic landscape changes during cancer pathogenesis and positive selection of mtDNA heteroplasmic mutations in breast cancer. Most importantly, the mitochondrial mutations identified in biopsies can be traced back in matched plasma samples and could potentially be used as early breast cancer diagnostic biomarkers.
  •  
18.
  • Loman, Niklas, et al. (författare)
  • Abstract P2-02-09: Breast cancer subtype distribution and circulating tumor DNA in response to neoadjuvant chemotherapy: Experiences from a preoperative cohort within SCAN-B
  • 2018
  • Ingår i: Cancer research. Supplement. - 1538-7445. ; 78:4
  • Konferensbidrag (refereegranskat)abstract
    • Introduction: Preoperative chemotherapy in early breast cancer increases the rate of breast preservation and provides prognostic information. In the case of residual disease, a change in subtypes may be observed. Sensitive and reproducible biomarkers predicting treatment response early during the treatment course are needed in order to better exploit the potential benefit of an individualized preoperative treatment.Material and Methods: In an ongoing prospective study within the population-based SCAN-B project (NCT02306096), patients undergoing preoperative chemotherapy for early or locally recurrent breast cancer have been treated with iv Epirubicin and Cyclophosphamide q3w x 3 in sequence with either Docetaxel q3w x 3 or Paclitaxel q1w x 9 with a preoperative intent. HER2-positive cases also received HER2-directed treatment. At baseline, patients were staged using sentinel node biopsy for clinically node-negative patients and CT scan for cytologically confirmed node-positive cases. A clinical core needle biopsy as well as tissue from the surgical specimen was collected for determination of conventional biomarkers including ER, PgR, HER2 and Ki67. Tumor biopsies for biomolecule-extraction and RNA-sequencing were taken using ultrasound guidance and collected fresh in RNAlater at baseline, after 2 treatment cycles, as well as at surgery. Blood plasma samples were collected at baseline, after one-, three-, and six- 3w treatment cycles, and post-surgery. Using RNA-sequencing data, somatic mutations were identified in the tumor biopsies and personalized analyses for circulating tumor DNA (ctDNA) were performed. A pathological complete remission (pCR) was defined as the complete disappearance of invasive breast cancer in the breast and axilla at time of definitive surgery. Subtyping was performed using modified St Gallen criteria (2013).Results: Thus far, 45 patients aged 24-74 years have been included, of which 34 (76 %) were clinical stage 2 and 11 (24%) were stage 3. The subtype distribution at baseline was five Luminal A-like (11 %), 21 Luminal B-like (HER2 negative) (47 %), 8 HER2-positive (18 %) and 11 Triple-negative (ductal) (24 %). The rates of pCR in 38 operated cases to date were 0/3 Luminal A-like, 3/19 Luminal B-like (HER2 negative), 2/8 HER2-positive, and 4/7 Triple-negative (overall 24 % pCR rate). One patient did not undergo surgery due to clinically progressive disease. In 25 cases with evaluable residual disease at surgery, there was a shift in the subtype in 13 (52 %), the majority of which represented a transition from Luminal B to Luminal A. No Triple-negative cases underwent a change in subtype during treatment. Results of the ctDNA analyses will be presented at the meeting.Discussion: We have established an infrastructure allowing for an extensive evaluation of preoperative chemotherapy in early breast cancer. The goal is to develop methods to refine response-guided treatment in early breast cancer using molecular responses in the tumor as well as in the blood circulation. The patients continue to be prospectively monitored with iterative ctDNA analyses during follow-up.
  •  
19.
  • Meng, Pei, et al. (författare)
  • Digital PCR quantification of ultrahigh ERBB2 copy number identifies poor breast cancer survival after trastuzumab
  • 2024
  • Ingår i: npj Breast Cancer. - 2374-4677. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • HER2/ERBB2 evaluation is necessary for treatment decision-making in breast cancer (BC), however current methods have limitations and considerable variability exists. DNA copy number (CN) evaluation by droplet digital PCR (ddPCR) has complementary advantages for HER2/ERBB2 diagnostics. In this study, we developed a single-reaction multiplex ddPCR assay for determination of ERBB2 CN in reference to two control regions, CEP17 and a copy-number-stable region of chr. 2p13.1, validated CN estimations to clinical in situ hybridization (ISH) HER2 status, and investigated the association of ERBB2 CN with clinical outcomes. 909 primary BC tissues were evaluated and the area under the curve for concordance to HER2 status was 0.93 and 0.96 for ERBB2 CN using either CEP17 or 2p13.1 as reference, respectively. The accuracy of ddPCR ERBB2 CN was 93.7% and 94.1% in the training and validation groups, respectively. Positive and negative predictive value for the classic HER2 amplification and non-amplification groups was 97.2% and 94.8%, respectively. An identified biological “ultrahigh” ERBB2 ddPCR CN group had significantly worse survival within patients treated with adjuvant trastuzumab for both recurrence-free survival (hazard ratio, HR: 3.3; 95% CI 1.1–9.6; p = 0.031, multivariable Cox regression) and overall survival (HR: 3.6; 95% CI 1.1–12.6; p = 0.041). For validation using RNA-seq data as a surrogate, in a population-based SCAN-B cohort (NCT02306096) of 682 consecutive patients receiving adjuvant trastuzumab, the ultrahigh-ERBB2 mRNA group had significantly worse survival. Multiplex ddPCR is useful for ERBB2 CN estimation and ultrahigh ERBB2 may be a predictive factor for decreased long-term survival after trastuzumab treatment.
  •  
20.
  • Olsson, Eleonor, et al. (författare)
  • Mutation Screening of 1,237 Cancer Genes across Six Model Cell Lines of Basal-Like Breast Cancer.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Basal-like breast cancer is an aggressive subtype generally characterized as poor prognosis and lacking the expression of the three most important clinical biomarkers, estrogen receptor, progesterone receptor, and HER2. Cell lines serve as useful model systems to study cancer biology in vitro and in vivo. We performed mutational profiling of six basal-like breast cancer cell lines (HCC38, HCC1143, HCC1187, HCC1395, HCC1954, and HCC1937) and their matched normal lymphocyte DNA using targeted capture and next-generation sequencing of 1,237 cancer-associated genes, including all exons, UTRs and upstream flanking regions. In total, 658 somatic variants were identified, of which 378 were non-silent (average 63 per cell line, range 37-146) and 315 were novel (not present in the Catalogue of Somatic Mutations in Cancer database; COSMIC). 125 novel mutations were confirmed by Sanger sequencing (59 exonic, 48 3'UTR and 10 5'UTR, 1 splicing), with a validation rate of 94% of high confidence variants. Of 36 mutations previously reported for these cell lines but not detected in our exome data, 36% could not be detected by Sanger sequencing. The base replacements C/G>A/T, C/G>G/C, C/G>T/A and A/T>G/C were significantly more frequent in the coding regions compared to the non-coding regions (OR 3.2, 95% CI 2.0-5.3, P<0.0001; OR 4.3, 95% CI 2.9-6.6, P<0.0001; OR 2.4, 95% CI 1.8-3.1, P<0.0001; OR 1.8, 95% CI 1.2-2.7, P = 0.024, respectively). The single nucleotide variants within the context of T[C]T/A[G]A and T[C]A/T[G]A were more frequent in the coding than in the non-coding regions (OR 3.7, 95% CI 2.2-6.1, P<0.0001; OR 3.8, 95% CI 2.0-7.2, P = 0.001, respectively). Copy number estimations were derived from the targeted regions and correlated well to Affymetrix SNP array copy number data (Pearson correlation 0.82 to 0.96 for all compared cell lines; P<0.0001). These mutation calls across 1,237 cancer-associated genes and identification of novel variants will aid in the design and interpretation of biological experiments using these six basal-like breast cancer cell lines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 29
Typ av publikation
tidskriftsartikel (20)
konferensbidrag (6)
annan publikation (1)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Chen, Yilun (28)
Brueffer, Christian (15)
Saal, Lao (14)
Rydén, Lisa (12)
Borg, Åke (12)
Ehinger, Anna (10)
visa fler...
Loman, Niklas (9)
Larsson, Christer (8)
Häkkinen, Jari (8)
Vallon-Christersson, ... (8)
Winter, Christof (8)
Gruvberger, Sofia (8)
Bendahl, Pär Ola (6)
Dahlgren, Malin (6)
Olsson, Eleonor (6)
Grabau, Dorthe (4)
Tang, Man-Hung Eric (4)
Aaltonen, Kristina (2)
Fernö, Mårten (2)
Manjer, Jonas (2)
Lazarevic, Vladimir (2)
Malina, Janne (2)
Zhang, Qiong (2)
Nimeus, Emma (2)
Ehinger, Mats (2)
Chen, Yang (1)
Juliusson, Gunnar (1)
Sundquist, Kristina (1)
Zhou, Li (1)
Lausen, Birgitte (1)
Alkner, Sara (1)
Ahlberg, Per, 1963- (1)
Sundquist, Jan (1)
Memon, Ashfaque A. (1)
van Westen, Danielle (1)
Ma, Jing (1)
Wang, Yu (1)
Baker, Sara (1)
Hong, Mun-Gwan (1)
Alm, Sofie J., 1988 (1)
Asp, Julia, 1973 (1)
Fogelstrand, Linda, ... (1)
Pronk, Cornelis Jan (1)
Barbany, Gisela (1)
Song, Guangchun (1)
Zhang, Jinghui (1)
Lu, Jing (1)
Lohi, Olli (1)
Wang, Kun (1)
Jernström, Helena (1)
visa färre...
Lärosäte
Lunds universitet (26)
Stockholms universitet (3)
Göteborgs universitet (1)
Umeå universitet (1)
Uppsala universitet (1)
Karolinska Institutet (1)
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (26)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy