SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Christensen Torben R.) "

Sökning: WFRF:(Christensen Torben R.)

  • Resultat 61-70 av 76
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
61.
  • Meng, Lei, et al. (författare)
  • Focus on the impact of climate change on wetland ecosystems and carbon dynamics
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:10
  • Forskningsöversikt (refereegranskat)abstract
    • The renewed growth in atmospheric methane (CH4) since 2007 after a decade of stabilization has drawn much attention to its causes and future trends. Wetlands are the single largest source of atmospheric CH4. Understanding wetland ecosystems and carbon dynamics is critical to the estimation of global CH4 and carbon budgets. After approximately 7 years of CH4 related research following the renewed growth in atmospheric CH4, Environmental Research Letters launched a special issue of research letters on wetland ecosystems and carbon dynamics in 2014. This special issue highlights recent developments in terrestrial ecosystem models and field measurements of carbon fluxes across different types of wetland ecosystems. The 14 research letters emphasize the importance of wetland ecosystems in the global CO2 and CH4 budget.
  •  
62.
  • Norlund Christensen, Axel, et al. (författare)
  • Formation and transformation of five different phases in the CaSO4-H2O system: Crystal structure of the subhydrate beta-CaSO4 center dot 0.5H(2)O and soluble anhydrite CaSO4
  • 2008
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 20:6, s. 2124-2132
  • Tidskriftsartikel (refereegranskat)abstract
    • At least five crystalline-phases can be found in the CaSO4-H2O system, which are gypsum CaSO4 center dot 2H(2)O, the subhydrates alpha- and beta-CaSO4 center dot 0.5H(2)O, and the soluble and insoluble anhydrite CaSO4. The formation of these five phases in the CaSO4-H2O system and their transformations were investigated by in situ time-resolved synchrotron radiation powder X-ray diffraction (SR-PXD) in this study. Furthermore, revised structural models for beta-CaSO4 center dot 0.5H(2)O and soluble anhydrite CaSO4 are presented. The hydration of alpha-CaSO4 center dot 0.5H(2)O was studied at 25 degrees C and showed that the reaction with H2O started immediately after mixing the two reactants and that the formation of CaSO4 center dot 2H(2)O was coupled to the depletion of alpha-CaSO4 center dot 0.5H(2)O. The thermal decomposition of CaSO4 center dot 2H(2)O was investigated in the temperature range of 25-500 degrees C and showed the fon-nation of alpha-CaSO4 center dot 0.5H(2)O followed by the formation of soluble anhydrite AIII-CaSO4, which was gradually converted to insoluble anhydrite AII-CaSO4. The thermal decomposition of alpha-CaSO4 center dot 0.5D(2)O was investigated in the temperature range of 25-500 degrees C and showed successive phase transformations to beta-CaSO4 center dot 0.5D(2)O, soluble anhydrite AIII-CaSO4, and insoluble anhydrite AII-CaS04. The two polymorphs of anhydrite coexist in the investigated temperature range of 200-500 degrees C. The hydrothermal decomposition of CaSO4 center dot 2H(2)O was investigated in the temperature range of 25-200 degrees C using a 1 M HNO3 or a 1 M LiCl solution, and in both experiments, CaSO4 center dot 2H(2)O was converted to alpha-CaSO4 center dot 0.5H(2)O and further to insoluble anhydrite AII-CaSO4. A structural model for beta-CaSO4 center dot 0.5H(2)O is proposed on the basis of SR-PXD data and a trigonal unit cell (in hexagonal setting) a = 6.93145(3), c = 12.736 17(4) angstrom, Z = 6, and space group P3(1). A structural model for soluble anhydrite AIII-CaSO4 is also proposed on the basis of powder neutron diffraction data, and a hexagonal unit cell parameters are a = 6.9687(1), c = 6.3004(1) angstrom, Z = 3, and space group P6(2)22.
  •  
63.
  • Parmentier, Frans Jan W, et al. (författare)
  • A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere
  • 2017
  • Ingår i: Ambio: a Journal of the Human Environment. - : Springer Science and Business Media LLC. - 0044-7447. ; 46, s. 53-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air–sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean–land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.
  •  
64.
  • Pascual, Didac, et al. (författare)
  • The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study
  • 2021
  • Ingår i: Ambio. - : Springer. - 0044-7447 .- 1654-7209. ; 50:2, s. 375-392
  • Forskningsöversikt (refereegranskat)abstract
    • Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.
  •  
65.
  • Petrescu, A. M. R., et al. (författare)
  • Modelling CH4 emissions from arctic wetlands : effects of hydrological parameterization
  • 2008
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 5:1, s. 111-121
  • Tidskriftsartikel (refereegranskat)abstract
    • This study compares the CH4 fluxes from two arctic wetland sites of different annual temperatures during 2004 to 2006. The PEATLAND-VU model was used to simulate the emissions. The CH4 module of PEATLAND-VU is based on the Walter-Heimann model. The first site is located in northeast Siberia, Indigirka lowlands, Kytalyk reserve (70 degrees N, 147 degrees E) in a continuous permafrost region with mean annual temperatures of -14.3 degrees C. The other site is Stordalen mire in the eastern part of Lake Tornetrask (68 degrees N, 19 degrees E) ten kilometres east of Abisko, northern Sweden. It is located in a discontinuous permafrost region. Stordalen has a sub arctic climate with a mean annual temperature of -0.7 degrees C. Model input consisted of observed temperature, precipitation and snow cover data. In all cases, modelled CH4 emissions show a direct correlation between variations in water table and soil temperature variations. The differences in CH4 emissions between the two sites are caused by different climate, hydrology, soil physical properties, vegetation type and NPP. For Kytalyk the simulated CH4 fluxes show similar trends during the growing season, having average values for 2004 to 2006 between 1.29-2.09 mg CH4 m(-2) hr(-1). At Stordalen the simulated fluxes show a slightly lower average value for the same years (3.52 mg CH4 m(-2) hr(-1)) than the observed 4.7 mg CH4 m(-2) hr(-1). The effect of the longer growing season at Stordalen is simulated correctly. Our study shows that modelling of arctic CH4 fluxes is improved by adding a relatively simple hydrological model that simulates the water table position from generic weather data. Our results support the generalization in literature that CH4 fluxes in northern wetland are regulated more tightly by water table than temperature. Furthermore, parameter uncertainty at site level in wetland CH4 process models is an important factor in large scale modelling of CH4 fluxes.
  •  
66.
  • Pirk, Norbert, et al. (författare)
  • Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:4, s. 903-912
  • Tidskriftsartikel (refereegranskat)abstract
    • The closed chamber technique is widely used to measure the exchange of methane (CH4) and carbon dioxide (CO2) from terrestrial ecosystems. There is, however, large uncertainty about which model should be used to calculate the gas flux from the measured gas concentrations. Due to experimental uncertainties the simple linear regression model (first-order polynomial) is often applied, even though theoretical considerations of the technique suggest the application of other, curvilinear models. High-resolution automatic chamber systems which sample gas concentrations several hundred times per flux measurement make it possible to resolve the curvilinear behavior and study the information imposed by the natural variability of the temporal concentration changes. We used more than 50 000 such flux measurements of CH4 and CO2 from five field sites located in peat-forming wetlands ranging from 56 to 78 degrees N to quantify the typical differences between flux estimates of different models. In addition, we aimed to assess the curvilinearity of the concentration time series and test the general applicability of curvilinear models. Despite significant episodic differences between the calculated flux estimates, the overall differences are generally found to be smaller than the local flux variability on the plot scale. The curvilinear behavior of the gas concentrations within the chamber is strongly influenced by wind-driven chamber leakage, and less so by changing gas concentration gradients in the soil during chamber closure. Such physical processes affect both gas species equally, which makes it possible to isolate biochemical processes affecting the gases differently, such as photosynthesis limitation by chamber headspace CO2 concentrations under high levels of incoming solar radiation. We assess the possibility to exploit this effect for a partitioning of the net CO2 flux into photosynthesis and ecosystem respiration as an example of how high-resolution automatic chamber measurements could be used for purposes beyond the estimation of the net gas flux. This shows that while linear and curvilinear calculation schemes can provide similar net fluxes, only curvilinear models open additional possibilities for high-resolution automatic chamber measurements.
  •  
67.
  • Pirk, Norbert, et al. (författare)
  • Spatial variability of CO2 uptake in polygonal tundra : Assessing low-frequency disturbances in eddy covariance flux estimates
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:12, s. 3157-3169
  • Tidskriftsartikel (refereegranskat)abstract
    • The large spatial variability in Arctic tundra complicates the representative assessment of CO2 budgets. Accurate measurements of these heterogeneous landscapes are, however, essential to understanding their vulnerability to climate change. We surveyed a polygonal tundra lowland on Svalbard with an unmanned aerial vehicle (UAV) that mapped ice-wedge morphology to complement eddy covariance (EC) flux measurements of CO2. The analysis of spectral distributions showed that conventional EC methods do not accurately capture the turbulent CO2 exchange with a spatially heterogeneous surface that typically features small flux magnitudes. Nonlocal (low-frequency) flux contributions were especially pronounced during snowmelt and introduced a large bias of -46 gCm-2 to the annual CO22 budget in conventional methods (the minus sign indicates a higher uptake by the ecosystem). Our improved flux calculations with the ogive optimization method indicated that the site was a strong sink for CO2 in 2015 (82 gCm2). Due to differences in light-use efficiency, wetter areas with lowcentered polygons sequestered 47% more CO2 than drier areas with flat-centered polygons. While Svalbard has experienced a strong increase in mean annual air temperature of more than 2K in the last few decades, historical aerial photographs from the site indicated stable ice-wedge morphology over the last 7 decades. Apparently, warming has thus far not been sufficient to initiate strong ice-wedge degradation, possibly due to the absence of extreme heat episodes in the maritime climate on Svalbard. However, in Arctic regions where ice-wedge degradation has already initiated the associated drying of landscapes, our results suggest a weakening of the CO2 sink in polygonal tundra.
  •  
68.
  • Post, Eric, et al. (författare)
  • Ecological Dynamics Across the Arctic Associated with Recent Climate Change
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 325:5946, s. 1355-1358
  • Forskningsöversikt (refereegranskat)abstract
    • At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.
  •  
69.
  • Post, Eric, et al. (författare)
  • The polar regions in a 2°C warmer world
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 5:12
  • Forskningsöversikt (refereegranskat)abstract
    • Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.
  •  
70.
  • Reay, Dave S., et al. (författare)
  • Methane and global environmental change
  • 2018
  • Ingår i: Annual Review of Environment and Resources. - : Annual Reviews. - 1543-5938 .- 1545-2050. ; 43, s. 165-192
  • Forskningsöversikt (refereegranskat)abstract
    • Global atmospheric methane concentrations have continued to rise in recent years, having already more than doubled since the Industrial Revolution. Further environmental change, especially climate change, in the twenty-first century has the potential to radically alter global methane fluxes. Importantly, changes in temperature, precipitation, and net primary production may induce positive climate feedback effects in dominant natural methane sources such as wetlands, soils, and aquatic ecosystems. Anthropogenic methane sources may also be impacted, with a risk of enhanced emissions from the energy, agriculture, and waste sectors. Here, we review the global sources of methane, the trends in fluxes by source and sector, and their possible evolution in response to future environmental change. We discuss ongoing uncertainties in flux estimation and projection, and highlight the great potential for multisector methane mitigation as part of wider global climate change policy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 61-70 av 76
Typ av publikation
tidskriftsartikel (58)
bokkapitel (10)
forskningsöversikt (5)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (66)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Christensen, Torben ... (32)
Linneberg, Allan (18)
Christensen, Torben (18)
Salomaa, Veikko (16)
Tuomilehto, Jaakko (16)
Lind, Lars (15)
visa fler...
Hansen, Torben (15)
Laakso, Markku (14)
McCarthy, Mark I (14)
Brandslund, Ivan (14)
Grarup, Niels (14)
Pedersen, Oluf (14)
Boehnke, Michael (14)
Mohlke, Karen L (14)
Mahajan, Anubha (14)
Bork-Jensen, Jette (13)
Lindgren, Cecilia M. (13)
Langenberg, Claudia (12)
Palmer, Colin N. A. (12)
Karpe, Fredrik (12)
Elliott, Paul (12)
Zeggini, Eleftheria (12)
Rauramaa, Rainer (12)
Deloukas, Panos (11)
Wareham, Nicholas J. (11)
Kuusisto, Johanna (11)
Wilson, James G. (11)
Mastepanov, Mikhail (11)
Groop, Leif (10)
Franks, Paul W. (10)
Johansson, Margareta (10)
Saleheen, Danish (10)
Peters, Annette (10)
Spector, Timothy D (10)
Metspalu, Andres (10)
Loos, Ruth J F (10)
Collins, Francis S. (10)
Boeing, Heiner (9)
Tuomi, Tiinamaija (9)
Scott, Robert A (9)
Jorgensen, Torben (9)
Zhao, Wei (9)
Locke, Adam E. (9)
Hattersley, Andrew T (9)
Morris, Andrew D (9)
Gudnason, Vilmundur (9)
Ferrières, Jean (9)
Frayling, Timothy M (9)
Esko, Tõnu (9)
Amouyel, Philippe (9)
visa färre...
Lärosäte
Lunds universitet (63)
Uppsala universitet (21)
Umeå universitet (20)
Stockholms universitet (14)
Göteborgs universitet (6)
Sveriges Lantbruksuniversitet (6)
visa fler...
Luleå tekniska universitet (3)
Linköpings universitet (3)
Karolinska Institutet (3)
Högskolan Dalarna (2)
Högskolan Kristianstad (1)
Högskolan i Skövde (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (76)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (57)
Medicin och hälsovetenskap (21)
Lantbruksvetenskap (5)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy