SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deary IJ) "

Sökning: WFRF:(Deary IJ)

  • Resultat 51-60 av 87
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
51.
  • Jia, TY, et al. (författare)
  • Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:8, s. 3884-3895
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)—three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.
  •  
52.
  • Johnson, W, et al. (författare)
  • Family background buys an education in Minnesota but not in Sweden
  • 2010
  • Ingår i: Psychological science. - : SAGE Publications. - 1467-9280 .- 0956-7976. ; 21:9, s. 1266-1273
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment, the highest degree or level of schooling obtained, is associated with important life outcomes, at both the individual level and the group level. Because of this, and because education is expensive, the allocation of education across society is an important social issue. A dynamic quantitative environmental-genetic model can help document the effects of social allocation patterns. We used this model to compare the moderating effect of general intelligence on the environmental and genetic factors that influence educational attainment in Sweden and the U.S. state of Minnesota. Patterns of genetic influence on educational outcomes were similar in these two regions, but patterns of shared environmental influence differed markedly. In Sweden, shared environmental influence on educational attainment was particularly important for people of high intelligence, whereas in Minnesota, shared environmental influences on educational attainment were particularly important for people of low intelligence. This difference may be the result of differing access to education: state-supported access (on the basis of ability) to a uniform higher-education system in Sweden versus family-supported access to a more diverse higher-education system in the United States.
  •  
53.
  •  
54.
  •  
55.
  • Kilpelainen, TO, et al. (författare)
  • Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity
  • 2019
  • Ingår i: Nature communications. - London : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 376-
  • Tidskriftsartikel (refereegranskat)abstract
    • Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
  •  
56.
  •  
57.
  •  
58.
  •  
59.
  •  
60.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 51-60 av 87

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy