SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dennefeld M.) "

Search: WFRF:(Dennefeld M.)

  • Result 11-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Benetti, S., et al. (author)
  • The supernova CSS121015:004244+132827 : a clue for understanding superluminous supernovae
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 441:1, s. 289-303
  • Journal article (peer-reviewed)abstract
    • We present optical photometry and spectra of the superluminous Type II/IIn supernova (SN) CSS121015: 004244+132827 (z = 0.2868) spanning epochs from -30 d (rest frame) to more than 200 d after maximum. CSS121015 is one of the more luminous SNe ever found and one of the best observed. The photometric evolution is characterized by a relatively fast rise to maximum (similar to 40 d in the SN rest frame), and by a linear post-maximum decline. The light curve shows no sign of a break to an exponential tail. A broad Ha is first detected at similar to+40 d (rest frame). Narrow, barely resolved Balmer and [O III] 5007 angstrom lines, with decreasing strength, are visible along the entire spectral evolution. The spectra are very similar to other superluminous supernovae (SLSNe) with hydrogen in their spectrum, and also to SN 2005gj, sometimes considered Type Ia interacting with H-rich circumstellar medium. The spectra are also similar to a subsample of H-deficient SLSNe. We propose that the properties of CSS121015 are consistent with the interaction of the ejecta with a massive, extended, opaque shell, lost by the progenitor decades before the final explosion, although a magnetar-powered model cannot be excluded. Based on the similarity of CSS121015 with other SLSNe (with and without H), we suggest that the shocked-shell scenario should be seriously considered as a plausible model for both types of SLSN.
  •  
12.
  • Smartt, S. J., et al. (author)
  • A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 827:2
  • Journal article (peer-reviewed)abstract
    • We present a search for an electromagnetic counterpart of the gravitational-wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i(P1) filter, starting 11.5 hr after the LIGO information release and lasting for an additional 28 days. The first observations started 49.5 hr after the time of the GW151226 detection. We typically reached sensitivity limits of i(P1) = 20.3-20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m similar or equal to 19. We found 49 extragalactic transients (that are not obviously active galactic nuclei), including a faint transient in a galaxy at 7 Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226, that evolved into a type Ibn supernova. The redshift of the transient is secure at z = 0.1747 +/- 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS-NS mergers producing kilonovae at D-L less than or similar to 100 Mpc, which is promising for future LIGO/Virgo searches.
  •  
13.
  • Goobar, Ariel, et al. (author)
  • THE RISE OF SN 2014J IN THE NEARBY GALAXY M82
  • 2014
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 784:1
  • Journal article (peer-reviewed)abstract
    • We report on the discovery of SN 2014J in the nearby galaxy M82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova (SN) over a wide range of the electromagnetic spectrum. Optical, near-IR, and mid-IR observations on the rising light curve, orchestrated by the intermediate Palomar Transient Factory, show that SN 2014J is a spectroscopically normal Type Ia supernova (SN Ia), albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the light curve rise. Similar to other highly reddened SNe Ia, a low value of total-to-selective extinction, R-V less than or similar to 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from Hubble Space Telescope with special emphasis on the sources nearest to the SN location.
  •  
14.
  • Pastorello, A., et al. (author)
  • A giant outburst two years before the core-collapse of a massive star
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 829-832
  • Journal article (peer-reviewed)abstract
    • The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars(1,2). The detection of several precursor stars of type II supernovae has been reported ( see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient(4) that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf - Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60 - 100 solar masses(5), but the progenitor of SN 2006jc was helium- and hydrogen-deficient ( unlike LBVs). An LBV-like outburst of a Wolf - Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf - Rayet star exploding as SN 2006jc, could explain the observations.
  •  
15.
  • Tomasella, L., et al. (author)
  • Comparison of progenitor mass estimates for the Type IIP SN 2012A
  • 2013
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 434:2, s. 1636-1657
  • Journal article (peer-reviewed)abstract
    • We present the one-year long observing campaign of SN 2012A which exploded in the nearby (9.8 Mpc) irregular galaxy NGC 3239. The photometric evolution is that of a normal Type IIP supernova, but the plateau is shorter and the luminosity not as constant as in other supernovae of this type. The absolute maximum magnitude, with M-B = -16.23 +/- 0.16 mag, is close to the average for SN IIP. Thanks also to the strong UV flux in the early phase, SN 2012A reached a peak luminosity of about 2 x 10(42) erg s(-1), which is brighter than those of other SNe with a similar Ni-56 mass. The latter was estimated from the luminosity in the exponential tail of the light curve and found to be M(Ni-56) = 0.011 +/- 0.004 M-circle dot, which is intermediate between standard and faint SN IIP. The spectral evolution of SN 2012A is also typical of SN IIP, from the early spectra dominated by a blue continuum and very broad (similar to 10(4) km s(-1)) Balmer lines, to the late-photospheric spectra characterized by prominent P-Cygni features of metal lines (Fe ii, Sc ii, Ba ii, Ti ii, Ca ii, Na i D). The photospheric velocity is moderately low, similar to 3 x 10(3) km s(-1) at 50 d, for the low optical depth metal lines. The nebular spectrum obtained 394 d after the shock breakout shows the typical features of SNe IIP and the strength of the [O i] doublet suggests a progenitor of intermediate mass, similar to SN 2004et (similar to 15 M-circle dot). A candidate progenitor for SN 2012A has been identified in deep, pre-explosion K-'-band Gemini North Near-InfraRed Imager and Spectrometer images, and found to be consistent with a star with a bolometric magnitude -7.08 +/- 0.36 (log L/L-circle dot = 4.73 +/- 0.14 dex). The magnitude of the recovered progenitor in archival images points towards a moderate-mass 10.5(-2)(+4.5) M-circle dot star as the precursor of SN 2012A. The explosion parameters and progenitor mass were also estimated by means of a hydrodynamical model, fitting the bolometric light curve, the velocity and the temperature evolution. We found a best fit for a kinetic energy of 0.48 foe, an initial radius of 1.8 x 10(13) cm and ejecta mass of 12.5 M-circle dot. Even including the mass for the compact remnant, this appears fully consistent with the direct measurements given above.
  •  
16.
  • Gutiérrez, C. P., et al. (author)
  • Type II supernovae in low-luminosity host galaxies
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 479:3, s. 3232-3253
  • Journal article (peer-reviewed)abstract
    • We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low-luminosity galaxies display weaker pEWs of Fe II lambda 5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.
  •  
17.
  • Nicholl, M., et al. (author)
  • An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:1, s. 482-504
  • Journal article (peer-reviewed)abstract
    • At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass approximate to 10(6) M-circle dot, disrupting a star of approximate to 1 M-circle dot. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L proportional to t(2), consistent with a photosphere expanding at constant velocity (greater than or similar to 2000 km s(-1)), and a line-forming region producing initially blueshifted H and He II profiles with v = 3000-10 000 km s(-1). The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission - the first time this connection has been observed in a TDE. The light-curve rise begins 29 +/- 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at approximate to 10(41) erg s(-1). Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.
  •  
18.
  •  
19.
  • Pastorello, A., et al. (author)
  • Massive stars exploding in a He-rich circumstellar medium - VIII. PSN J07285387+3349106, a highly reddened supernova Ibn
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 454:4, s. 4293-4303
  • Journal article (peer-reviewed)abstract
    • We present spectroscopic and photometric observations for the Type Ibn supernova (SN) dubbed PSN J07285387+3349106. Using data provided by amateur astronomers, we monitored the photometric rise of the SN to maximum light, occurred on 2015 February 18.8 UT (JD(max)(V) = 245 7072.0 +/- 0.8). PSN J07285387+3349106 exploded in the inner region of an infrared luminous galaxy, and is the most reddened SN Ibn discovered so far. We apply multiple methods to derive the total reddening to the SN, and determine a total colour excess E(B - V)(tot) = 0.99 +/- 0.48 mag. Accounting for the reddening correction, which is affected by a large uncertainty, we estimate a peak absolute magnitude of MV = -20.30 +/- 1.50. The spectra are dominated by continuum emission at early phases, and He I lines with narrow P-Cygni profiles are detected. We also identify weak Fe III and N II features. All these lines show an absorption component which is blueshifted by about 900-1000 km s(-1). The spectra also show relatively broad He I line wings with low contrast, which extend to above 3000 km s(-1). From about two weeks past maximum, broad lines of OI, Mg II and the Ca II near-infrared triplet are identified. The composition and the expansion velocity of the circumstellar material, and the presence of He I and alpha-elements in the SN ejecta indicate that PSN J07285387+3349106 was produced by the core collapse of a stripped-envelope star. We suggest that the precursor was WNE-type Wolf-Rayet star in its dense, He-rich circumstellar cocoon.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-19 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view