SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dorrepaal Ellen) "

Sökning: WFRF:(Dorrepaal Ellen)

  • Resultat 21-30 av 66
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Hough, Moira, et al. (författare)
  • Biotic and Environmental Drivers of Plant Microbiomes Across a Permafrost Thaw Gradient
  • 2020
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant-associated microbiomes are structured by environmental conditions and plant associates, both of which are being altered by climate change. The future structure of plant microbiomes will depend on the, largely unknown, relative importance of each. This uncertainty is particularly relevant for arctic peatlands, which are undergoing large shifts in plant communities and soil microbiomes as permafrost thaws, and are potentially appreciable sources of climate change feedbacks due to their soil carbon (C) storage. We characterized phyllosphere and rhizosphere microbiomes of six plant species, and bulk peat, across a permafrost thaw progression (from intact permafrost, to partially- and fully-thawed stages) via 16S rRNA gene amplicon sequencing. We tested the hypothesis that the relative influence of biotic versus environmental filtering (the role of plant species versus thaw-defined habitat) in structuring microbial communities would differ among phyllosphere, rhizosphere, and bulk peat. Using both abundance- and phylogenetic-based approaches, we found that phyllosphere microbial composition was more strongly explained by plant associate, with little influence of habitat, whereas in the rhizosphere, plant and habitat had similar influence. Network-based community analyses showed that keystone taxa exhibited similar patterns with stronger responses to drivers. However, plant associates appeared to have a larger influence on organisms belonging to families associated with methane-cycling than the bulk community. Putative methanogens were more strongly influenced by plant than habitat in the rhizosphere, and in the phyllosphere putative methanotrophs were more strongly influenced by plant than was the community at large. We conclude that biotic effects can be stronger than environmental filtering, but their relative importance varies among microbial groups. For most microbes in this system, biotic filtering was stronger aboveground than belowground. However, for putative methane-cyclers, plant associations have a stronger influence on community composition than environment despite major hydrological changes with thaw. This suggests that plant successional dynamics may be as important as hydrological changes in determining microbial relevance to C-cycling climate feedbacks. By partitioning the degree that plant versus environmental filtering drives microbiome composition and function we can improve our ability to predict the consequences of warming for C-cycling in other arctic areas undergoing similar permafrost thaw transitions.
  •  
22.
  • Hough, Moira, et al. (författare)
  • Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:3, s. 950-968
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2, and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post-thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post-thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2 and CH4 fluxes from decomposition. Thus, the increased C-storage expected from higher productivity was limited and the high global warming potential of CH4 contributed a net positive warming effect. Although post-thaw peatlands are currently C sinks due to high NPP offsetting high CO2 release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition. 
  •  
23.
  • Jansson, Johan, 1973-, et al. (författare)
  • Personal Norms for Dealing with Climate Change : Results from a Survey Using Moral Foundations Theory
  • 2015
  • Ingår i: Sustainable Development. - : John Wiley & Sons. - 0968-0802 .- 1099-1719. ; 23:6, s. 381-395
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change has become one of the main issues in environmental and sustainability discussions during the last decade. Acting to reduce climate change can be viewed as a prosocial behavior, and previous research has found that personal norms are important in explaining these types of behavior, together with other attitudinal factors. In this study we use Moral Foundations Theory (MFT) to explore the antecedents of personal climate change norms together with three attitudinal factors: problem awareness, social norms and adherence to the New Ecological Paradigm. Analyzing data from a nationwide survey (N = 1086) conducted in Sweden, we find that the moral foundations concerning harm and fairness are positively associated with personal climate change norms, whereas authority has a negative relation. However, the moral foundations from MFT contribute less in explaining personal climate change norms compared with the attitudinal factors included in the study. Theoretical and empirical implications are discussed.
  •  
24.
  • Jessen, Maria-Theresa, et al. (författare)
  • Understory functional groups and fire history but not experimental warming drive tree seedling performance in unmanaged boreal forests
  • 2023
  • Ingår i: Frontiers in Forests and Global Change. - : Frontiers Media S.A.. - 2624-893X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Survival and growth of tree seedlings are key processes of regeneration in forest ecosystems. However, little is known about how climate warming modulates seedling performance either directly or in interaction with understory vegetation and post-fire successional stages.Methods: We measured survival (over 3 years) and growth of seedlings of three tree species (Betula pubescens, Pinus sylvestris, and Picea abies) in a full-factorial field experiment with passive warming and removal of two plant functional groups (feather moss and/or ericaceous shrubs) along a post-fire chronosequence in an unmanaged boreal forest.Results: Warming had no effect on seedling survival over time or on relative biomass growth. Meanwhile, moss removal greatly increased seedling survival overall, while shrub removal canceled this effect for B. pubescens seedlings. In addition, B. pubescens and P. sylvestris survival benefitted most from moss removal in old forests (>260 years since last fire disturbance). In contrast to survival, seedling growth was promoted by shrub removal for two out of three species, i.e., P. sylvestris and P. abies, meaning that seedling survival and growth are governed by different understory functional groups affecting seedling performance through different mechanism and modes of action.Discussion: Our findings highlight that understory vegetation and to a lesser extent post-fire successional stage are important drivers of seedling performance while the direct effect of climate warming is not. This suggests that tree regeneration in future forests may be more responsive to changes in understory vegetation or fire regime, e.g., indirectly caused by warming, than to direct or interactive effects of rising temperatures.
  •  
25.
  • Keuper, Frida, et al. (författare)
  • A frozen feast : thawing permafrost increases plant-available nitrogen in subarctic peatlands
  • 2012
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 18:6, s. 1998-2007
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the world's northern peatlands are underlain by rapidly thawing permafrost. Because plant production in these peatlands is often nitrogen (N)-limited, a release of N stored in permafrost may stimulate net primary production or change species composition if it is plant-available. In this study, we aimed to quantify plant-available N in thawing permafrost soils of subarctic peatlands. We compared plant-available N-pools and -fluxes in near-surface permafrost (010cm below the thawfront) to those taken from a current rooting zone layer (515cm depth) across five representative peatlands in subarctic Sweden. A range of complementary methods was used: extractions of inorganic and organic N, inorganic and organic N-release measurements at 0.5 and 11 degrees C (over 120days, relevant to different thaw-development scenarios) and a bioassay with Poa alpina test plants. All extraction methods, across all peatlands, consistently showed up to seven times more plant-available N in near-surface permafrost soil compared to the current rooting zone layer. These results were supported by the bioassay experiment, with an eightfold larger plant N-uptake from permafrost soil than from other N-sources such as current rooting zone soil or fresh litter substrates. Moreover, net mineralization rates were much higher in permafrost soils compared to soils from the current rooting zone layer (273mgNm-2 and 1348mgNm-2 per growing season for near-surface permafrost at 0.5 degrees C and 11 degrees C respectively, compared to -30mgNm-2 for current rooting zone soil at 11 degrees C). Hence, our results demonstrate that near-surface permafrost soil of subarctic peatlands can release a biologically relevant amount of plant available nitrogen, both directly upon thawing as well as over the course of a growing season through continued microbial mineralization of organically bound N. Given the nitrogen-limited nature of northern peatlands, this release may have impacts on both plant productivity and species composition.
  •  
26.
  • Keuper, Frida, et al. (författare)
  • A race for space? : How Sphagnum fuscumstabilizes vegetation composition during long-termclimate manipulations
  • 2011
  • Ingår i: Global Change Biology. - : Blackwell. - 1354-1013 .- 1365-2486. ; 17:6, s. 2162-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong climate warming is predicted at higher latitudes this century, with potentially major consequences forproductivity and carbon sequestration. Although northern peatlands contain one-third of the world’s soil organiccarbon, little is known about the long-term responses to experimental climate change of vascular plant communities inthese Sphagnum-dominated ecosystems.We aimed to see how long-term experimental climate manipulations, relevantto different predicted future climate scenarios, affect total vascular plant abundance and species composition whenthe community is dominated by mosses. During 8 years, we investigated how the vascular plant community of aSphagnum fuscum-dominated subarctic peat bog responded to six experimental climate regimes, including factorialcombinations of summer as well as spring warming and a thicker snow cover. Vascular plant species composition inour peat bog was more stable than is typically observed in (sub)arctic experiments: neither changes in total vascularplant abundance, nor in individual species abundances, Shannon’s diversity or evenness were found in response tothe climate manipulations. For three key species (Empetrum hermaphroditum, Betula nana and S. fuscum) we alsomeasured whether the treatments had a sustained effect on plant length growth responses and how these responsesinteracted. Contrasting with the stability at the community level, both key shrubs and the peatmoss showed sustainedpositive growth responses at the plant level to the climate treatments. However, a higher percentage of mossencroachedE. hermaphroditum shoots and a lack of change in B. nana net shrub height indicated encroachment byS. fuscum, resulting in long-term stability of the vascular community composition: in a warmer world, vascular speciesof subarctic peat bogs appear to just keep pace with growing Sphagnum in their race for space. Our findings contributeto general ecological theory by demonstrating that community resistance to environmental changes does notnecessarily mean inertia in vegetation response.
  •  
27.
  • Keuper, Frida, et al. (författare)
  • Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
  • 2020
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 13, s. 560-565
  • Tidskriftsartikel (refereegranskat)abstract
    • As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism-termed the rhizosphere priming effect-may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by similar to 12%, which translates to a priming-induced absolute loss of similar to 40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 degrees C.
  •  
28.
  • Keuper, Frida, et al. (författare)
  • Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species
  • 2017
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 23:10, s. 4257-4266
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake (N-15-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep-(thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow-(Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their biomass production beyond the already established impact of warming-driven enhanced shallow N-mineralization. This may result in shifts in plant community composition and may partially counteract the increased carbon losses from thawing permafrost.
  •  
29.
  • Keuper, Frida, et al. (författare)
  • Tundra in the rain : Differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra
  • 2012
  • Ingår i: Ambio. - : Springer Netherlands. - 0044-7447 .- 1654-7209. ; 41:Suppl. 3, s. 269-280
  • Tidskriftsartikel (refereegranskat)abstract
    • Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.
  •  
30.
  • Krab, Eveline J, et al. (författare)
  • Experimentally increased snow depth affects high Arctic microarthropods inconsistently over two consecutive winters
  • 2022
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change induced alterations to winter conditions may affect decomposer organisms controlling the vast carbon stores in northern soils. Soil microarthropods are particularly abundant decomposers in Arctic ecosystems. We studied whether increased snow depth affected microarthropods, and if effects were consistent over two consecutive winters. We sampled Collembola and soil mites from a snow accumulation experiment at Svalbard in early summer and used soil microclimatic data to explore to which aspects of winter climate microarthropods are most sensitive. Community densities differed substantially between years and increased snow depth had inconsistent effects. Deeper snow hardly affected microarthropods in 2015, but decreased densities and altered relative abundances of microarthropods and Collembola species after a milder winter in 2016. Although increased snow depth increased soil temperatures by 3.2 °C throughout the snow cover periods, the best microclimatic predictors of microarthropod density changes were spring soil temperature and snowmelt day. Our study shows that extrapolation of observations of decomposer responses to altered winter climate conditions to future scenarios should be avoided when communities are only sampled on a single occasion, since effects of longer-term gradual changes in winter climate may be obscured by inter-annual weather variability and natural variability in population sizes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 66
Typ av publikation
tidskriftsartikel (51)
annan publikation (8)
forskningsöversikt (4)
doktorsavhandling (3)
Typ av innehåll
refereegranskat (54)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Dorrepaal, Ellen (63)
Keuper, Frida (14)
Wardle, David (9)
Aerts, Rien (8)
Michelsen, Anders (6)
Nilsson Hegethorn, M ... (6)
visa fler...
Johansson, Margareta (5)
Väisänen, Maria (5)
Olofsson, Johan (5)
Natali, Susan M. (4)
van Bodegom, Peter M ... (4)
Björk, Robert G., 19 ... (4)
Björkman, Mats P., 1 ... (4)
Molau, Ulf, 1951 (3)
Alatalo, Juha M. (3)
Klaminder, Jonatan, ... (3)
Kardol, Paul (3)
Rydin, Håkan, 1953- (3)
Hofgaard, Annika (3)
Aalto, Juha (2)
Hylander, Kristoffer (2)
Luoto, Miska (2)
Cooper, E J (2)
Vellak, Kai (2)
Schuur, Edward A. G. (2)
Turetsky, Merritt R. (2)
Benscoter, Brian W. (2)
Christensen, Torben ... (2)
Cornelissen, J. Hans ... (2)
Hugelius, Gustaf (2)
Johnstone, Jill F. (2)
Kuhry, Peter (2)
Oberbauer, Steven F. (2)
Olefeldt, David (2)
Welker, Jeffrey M. (2)
Nilsson, Mats (2)
Ardö, Jonas (2)
De Frenne, Pieter (2)
Wild, Birgit (2)
Galka, Mariusz (2)
Merinero, Sonia (2)
Larson, Keith (2)
Lenoir, Jonathan (2)
Boeckx, Pascal (2)
Klanderud, Kari (2)
Wardle, David A. (2)
Smith, Stuart W. (2)
Blume-Werry, Gesche (2)
Soudzilovskaia, Nade ... (2)
Boike, Julia (2)
visa färre...
Lärosäte
Umeå universitet (65)
Sveriges Lantbruksuniversitet (24)
Göteborgs universitet (8)
Stockholms universitet (8)
Lunds universitet (8)
Uppsala universitet (5)
visa fler...
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Högskolan i Gävle (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (66)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (63)
Lantbruksvetenskap (15)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy